Vol. 19

Latest Volume
All Volumes
All Issues
2010-01-19

Frequency Dispersion Limits Resolution in Veselago Lens

By Robert Collin
Progress In Electromagnetics Research B, Vol. 19, 233-261, 2010
doi:10.2528/PIERB09120904

Abstract

The properties of a lossless Veselago lens is examined when the material parameters epsilon and mu are frequency dispersive. A complete solution is presented that is based on the use of Fourier transforms in the frequency domain and is obtained in terms of the residues at the poles and branch cut integrals. It is shown that for an incident field with a finite frequency spectrum the excited evanescent field consists of resonant even and odd surface wave modes that do not grow exponentially within the slab. For a lossless slab and a sinusoidal signal of finite duration, at a single frequency corresponding to that where the relative values of epsilon and mu equal -1, Pendry's solution is obtained along with excited surface wave modes and other interfering waves that makes it impossible to obtain a coherent reconstruction of the spatial spectrum of the object field at the image plane. If the slab material is lossy the excited interfering surface wave modes will decay away in a relatively short time interval, but as shown by other investigators the resolution of the lens will be reduced in a very substantial way if the losses are moderate to large.

Citation


Robert Collin, "Frequency Dispersion Limits Resolution in Veselago Lens," Progress In Electromagnetics Research B, Vol. 19, 233-261, 2010.
doi:10.2528/PIERB09120904
http://test.jpier.org/PIERB/pier.php?paper=09120904

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, Jan.-Feb. 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, Oct. 2000.
    doi:10.1103/PhysRevLett.85.3966

    3. Smith, D. R., D. Schwrig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Letters, Vol. 82, No. 10, 1506-1508, Mar. 2003.
    doi:10.1063/1.1554779

    4. Merlin, R., "Analytical solution of the almost-perfect-lens problem," Appl. Phys. Lett., Vol. 84, 1290-1292, Feb. 2004. See also Errattum, Appl. Phys. Lett., Vol. 85, No. 11, Sep. 2004.
    doi:10.1063/1.1650548

    5. Milton, G. W., N. A. P. Nicolae, R. C. McPhedran, and V. A. Podolskiy, "A proof of superlensing in the quasistatic regime, and limitations of superlenses in this regime due to anomalous resonances localized resonance," Proc. Roy. Soc., Vol. 461, 3999-4034, Oct. 2005.

    6. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications, John Wiley & Sons, New York, 2008.

    7. Ruppin, R., "Surface polaritons of a left-handed material slab," J. Phys.: Cond. Matter, Vol. 13, 1811-1818, 2001.
    doi:10.1088/0953-8984/13/9/304

    8. Haldane, F. D., "Electromagnetic surface modes at interfaces with negative refractive index make a `Not-quite-perfect' lens,", http://arxiv.org/abs/condmat/0206420.
    doi:10.1103/PhysRevLett.90.077401

    9. Gomez-Santos, G., "Universal features of the time evolution of evanescent modes in a left-handed perfect lens," Phys. Rev. Lett., Vol. 90, No. 7, Feb. 2003.

    10. Grbic, A., "Left-handed lens metricssium on Electromagnetic Theory (EMTS)," International Sympo, Ottawa Canada, Jul. 26-28, 2007. http://www.ursi.org/B/EMTS 2007/O4-18/2-Grbic118.pdf.

    11. Yaghjian, A. D. and T. B. Hansen, "Plane-wave solutions to frequency-domain and time-domain scattering from magnetodielectric slabs," Phys. Rev. E --- Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, Vol. 73, 046608, 2006.
    doi:10.1109/TAP.2004.836393

    12. De Wolf, D. A., "Transmission of evanescent wave modes through a slab of DNG material," IEEE Trans. Antennas Propagat., Vol. 53, 270-274, Jan. 2005.
    doi:10.1109/TAP.2005.861517

    13. De Wolf, D. A., "Transmission of evanescent wave modes through a slab of DNG material II," IEEE Trans. Antennas Propagat., Vol. 54, 263-264, Jan. 2006.
    doi:10.2528/PIER04032602

    14. Chew, W. C., "Some reflections on double negative materials," Progress In Electromagnetics Research, Vol. 51, 1-26, 2005.
    doi:10.1109/TMTT.2002.805197

    15. Eleftheriades, G. V., A. K. Tyler, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microwave Theory and Tech., Vol. 50, 2702-2712, Dec. 2002.
    doi:10.1109/TMTT.2003.820162

    16. Grbic, A. and G. Eleftheriades, "Negative refraction, growing evanescent waves, and sub-diffraction imaging in loadedevanescent waves, and sub-diffraction imaging in loaded transmission-line metamaterials," IEEE Trans. Microwave Theory and Tech., Vol. 51, No. 12, 2297-2305, Dec. 2003.
    doi:10.1109/MAP.2007.379612

    17. Eleftheriades, G. V., "Enabling RF/microwave devices using negative-refractive-index transmission-line (NRI-TL) metamaterials," IEEE Antennas and Propagation Magazine, Vol. 49, No. 2, Apr. 2007.
    doi:10.1109/TMTT.2004.825703

    18. Sanada, A., C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive index," IEEE Trans. Microwave Theory and Tech., Vol. 52, No. 4, 1252-1263, Apr. 2004.

    19. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Prentice Hall, Engelwood Cliffs, New Jersey, 1991.

    20. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press Series on Electromagnetic Waves, IEEE Press, Piscataway, New Jersey, 1995.

    21. Felson, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Prentice Hall, Engelwood Cliffs, New Jersey, 1973.

    22. Papoulis, A., Systems and Transforms with Applications to Optics, McGraw-Hill, New York, 1968.

    23. Gralac, B. and A. Tip, "Macroscopic Maxwell's equations and negative index materials,", To be published, Available at http://arxiv.org/abs/0901.0187v3.

    24. Born, M. and E. Wolf, Principles of Optics, 2nd Ed., The Macmillan Co., New York, 1964.

    25. Stratton, J. A., Electromagnetic Theory, Ch. 5, McGraw-Hill, New York, 1941.