Vol. 26

Latest Volume
All Volumes
All Issues
2010-10-15

Application of the Generalized Method of Induced EMF for Investigation of Characteristics of Thin Impedance Vibrators

By Mikhail Nesterenko, Victor A. Katrich, Sergey L. Berdnik, Yuriy M. Penkin, and Victor M. Dakhov
Progress In Electromagnetics Research B, Vol. 26, 149-178, 2010
doi:10.2528/PIERB10052902

Abstract

The authors suggest the generalized method of induced electromotive forces (EMF) for the investigation of the characteristics of single and systems of thin impedance vibrators at their arbitrary excitation and distribution of the surface impedance on the ground of the made analysis in the pro-posed paper. The distinctive peculiarity of this method is the use of the approximating functions, re-sulted from the integral equation solution for the current by means of the asymptotic averaging me-thod, in the current distribution along the impedance vibrator.

Citation


Mikhail Nesterenko, Victor A. Katrich, Sergey L. Berdnik, Yuriy M. Penkin, and Victor M. Dakhov, "Application of the Generalized Method of Induced EMF for Investigation of Characteristics of Thin Impedance Vibrators," Progress In Electromagnetics Research B, Vol. 26, 149-178, 2010.
doi:10.2528/PIERB10052902
http://test.jpier.org/PIERB/pier.php?paper=10052902

References


    1. King, R. W. P. and T. T. Wu, "The imperfectly conducting cylindrical transmitting antenna," IEEE Trans. Antennas and Propagat., Vol. 14, 524-534, 1966.
    doi:10.1109/TAP.1966.1138733

    2. Glushkovskiy, E. A., B. M. Levin, and E. Y. Rabinovich, "The integral equation for the current in the thin impedance vibrator," Radiotechnika, Vol. 22, 18-23, 1967 (in Russian).

    3. Miller, M. A. and V. I. Talanov, "The use of the notion of the surface impedance in the theory of surface electromagnetic waves," Izvestiya Vusov USSR. Radiophysika, Vol. 4, 795-830, 1961 (in Russian).

    4. Lamensdorf, D., "An experimental investigation of dielectric-coated antennas," IEEE Trans. Antennas and Propagat., Vol. 15, 767-771, 1967.
    doi:10.1109/TAP.1967.1139049

    5. Taylor, C. D., "Cylindrical transmitting antenna: Tapered resistivity and multiple impedance loadings," IEEE Trans. Antennas and Propagat., Vol. 16, 176-179, 1968.
    doi:10.1109/TAP.1968.1139146

    6. Rao, B. L. J., J. E. Ferris, and W. E. Zimmerman, "Broadband characteristics of cylindrical antennas with exponentially tapered capacitive loading," IEEE Trans. Antennas and Propagat., Vol. 17, 145-151, 1969.
    doi:10.1109/TAP.1969.1139408

    7. Inagaki, N., O. Kukino, and T. Sekiguchi, "Integrated equation analysis of cylindrical antennas characterized by arbitrary surface impedance," IEICE Trans. Commun., Vol. 55-B, 683-690, 1972.

    8. Gorobets, N. N., M. V. Nesterenko, and V. A. Petlenko, "Resonance characteristics of thin impedance dipoles in a cutoff rectangular waveguide," Telecommunications and Radio Engineering, Vol. 45, No. 4, 110-112, 1990.

    9. Bretones, A. R., R. G. Martin, and I. S. García, "Time-domain analysis of magnetic-coated wire antennas," IEEE Trans. Antennas and Propagat., Vol. 43, 591-596, 1995.
    doi:10.1109/8.387174

    10. Andersen, L. S., O. Breinbjerg, and J. T. Moore, "The standard impedance boundary condition model for coated conductors with edges: A numerical investigation of the accuracy for transverse magnetic polarization," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 4, 415-446, 1998.
    doi:10.1163/156939398X00863

    11. Ikiz, T., S. Koshikawa, K. Kobayashi, E. I. Veliev, and A. H. Serbest, "Solution of the plane wave diffraction problem by an impedance strip using a numerical-analytical method: E-polarized case," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 3, 315-340, 2001.
    doi:10.1163/156939301X00481

    12. Nesterenko, M. V., "The electomagnetic wave radiation from a thin impedance dipole in a lossy homogeneous isotropic medium," Telecommunications and Radio Engineering, Vol. 61, 840-853, 2004.
    doi:10.1615/TelecomRadEng.v61.i10.40

    13. Arnold, M. D., "An efficient solution for scattering by a perfectly conducting strip grating," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 891-900, 2006.
    doi:10.1163/156939306776149905

    14. Ruppin, R., "Scattering of electromagnetic radiation by a perfect electromagnetic conductor cylinder," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1853-1860, 2006.
    doi:10.1163/156939306779292219

    15. Hady, L. K. and A. A. Kishk, "Electromagnetic scattering from conducting circular cylinder coated by meta-materials and loaded with helical strips under oblique incidence," Progress In Electromagnetics Research B, Vol. 3, 189-206, 2008.
    doi:10.2528/PIERB07121107

    16. Nesterenko, M. V., V. A. Katrich, V. M. Dakhov, and S. L. Berdnik, "Impedance vibrator with arbitrary point of excitation," Progress In Electromagnetics Research B, Vol. 5, 275-290, 2008.
    doi:10.2528/PIERB08022805

    17. Nesterenko, M. V., D. Y. Penkin, V. A. Katrich, and V. M. Dakhov, "Equation solution for the current in radial impedance monopole on the perfectly conducting sphere," Progress In Electromagnetics Research B, Vol. 19, 95-114, 2010.
    doi:10.2528/PIERB09111105

    18. Nesterenko, M. V., "Analytical methods in the theory of thin impedance vibrators," Progress In Electromagnetics Research B, Vol. 21, 299-328, 2010.

    19. Nesterenko, M. V., V. A. Katrich, Y. M. Penkin, and S. L. Berdnik, Analytical and Hybrid Methods in the Theory of Slot-hole Coupling of Electrodynamic Volumes, Springer Science+Business Media, LLC, New York, USA, 2008.
    doi:10.1007/978-0-387-76362-0

    20. Markov, G. T. and D. M. Sazonov, Antennas, Energiya, Moscow, 1975 (in Russian).

    21. King, R. W. P. and T. T. Wu, "The cylindrical antenna with arbitrary driving point," IEEE Trans. Antennas and Propagat., Vol. 13, 710-718, 1965.
    doi:10.1109/TAP.1965.1138531

    22. King, R. W. P. and G. S. Smith, Antennas in Matter, MIT Press, Cambridge, Massachusetts, and London, England, 1981.

    23. Nesterenko, M. V. and V. A. Katrich, "Thin vibrators with arbitrary surface impedance as a handset antennas," Proceedings of the 5th European Personal Mobile Communications Conference, 16-20, Glasgow, Scotland, 2003.

    24. Wu, T. T. and R. W. P. King, "The cylindrical antenna with nonreflecting resistive loading," IEEE Trans. Antennas and Propagat., Vol. 13, 369-373, 1965.
    doi:10.1109/TAP.1965.1138429

    25. Shen, L.-C., "An experimental study of the antenna with nonreflecting resistive loading," IEEE Trans. Antennas and Propagat., Vol. 15, 606-611, 1967.
    doi:10.1109/TAP.1967.1139025

    26. Taylor, C. D., "Cylindrical transmitting antenna: Tapered resistivity and multiple impedance loadings," IEEE Trans. Antennas and Propagat., Vol. 16, 176-179, 1968.
    doi:10.1109/TAP.1968.1139146

    27. Nesterenko, M. V., "Electromagnetic wave scattering by variable surface impedance thin vibrators," Radiophysics and radioastronomy, Vol. 10, No. 4, 408-417, 2005 (in Russian).

    28. Yagi, H. and S. Uda, "Projector of the sharpest beam of electric waves," Proc. Imperial Academy, Vol. 2, 49-52, Japan, 1926.

    29. Sun, B.-H., S.-G. Zhou, Y.-F. Wei, and Q.-Z. Liu, "Modified two-element Yagi-Uda antenna with tunable beams," Progress In Electromagnetics Research, Vol. 100, 175-187, 2010.
    doi:10.2528/PIER09111501

    30. King, R. W. P., R. B. Mack, and S. S. Sandler, Arrays of Cylindrical Dipoles, Cambridge University Press, New York, USA, 1968.
    doi:10.1017/CBO9780511735820