Vol. 32

Latest Volume
All Volumes
All Issues
2011-07-20

Optimum High Impedance Surface Configuration for Mutual Coupling Reduction in Small Antenna Arrays

By Nicolas Capet, Cedric Martel, Jérôme Sokoloff, and Olivier Pascal
Progress In Electromagnetics Research B, Vol. 32, 283-297, 2011
doi:10.2528/PIERB11050506

Abstract

In this paper, the electromagnetic properties of two different High Impedance Surfaces (HIS) with or without Electromagnetic Band Gap (EBG) in different configurations are investigated for mutual coupling reduction in small antenna arrays. The resonant mechanisms of these structures are studied using transmission calculations in a parallel plate waveguide. An optimum configuration is then proposed. It is shown that a good isolation performance can be achieved without the need of metallic vias when the structure is embedded in a metallic cavity, which limits significantly the number of HIS cells needed to perform a good isolation and the cost of manufacture.

Citation


Nicolas Capet, Cedric Martel, Jérôme Sokoloff, and Olivier Pascal, "Optimum High Impedance Surface Configuration for Mutual Coupling Reduction in Small Antenna Arrays," Progress In Electromagnetics Research B, Vol. 32, 283-297, 2011.
doi:10.2528/PIERB11050506
http://test.jpier.org/PIERB/pier.php?paper=11050506

References


    1. Van Trees, H. L., Optimum Array Processing, Part IV of Detection, Estimation, and Modulation Theory, Wiley-Interscience, 2002.

    2. Ngai, E. C. and D. J. Blejer, "Mutual coupling analyses for small GPS adaptive arrays," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 3841, 2001.

    3. Kildal, P.-S., "Artificially soft and hard surfaces in electromagnetics and their application to antenna design," 23rd European Microwave Conference, 30-33, Sep. 6--10, 1993.

    4. Rajo-Iglesias, E., O. Quevedo-Teruel, and L. Inclan-Sanchez, "Planar soft surfaces and their application to mutual coupling reduction," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 12, 3852-3859, Dec. 2009.
    doi:10.1109/TAP.2009.2024226

    5. Buell, K., H. Mosallaei, and K. Sarabandi, "Electromagnetic metamaterial insulator to eliminate substrate surface waves," IEEE Antennas and Propagation Society International Symposium, Vol. 2A, 574-577, Jul. 3--8, 2005.

    6. Guha, D., S. Biswas, M. Biswas, J. Y. Siddiqui, and Y. M. M. Antar, "Concentric ring-shaped defected ground structures for microstrip applications," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 402-405, Dec. 2006.
    doi:10.1109/LAWP.2006.880691

    7. Chiu, C.-Y., C.-H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1732-1738, Jun. 2007.
    doi:10.1109/TAP.2007.898618

    8. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, Nov. 1999.

    9. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2936-2946, Oct. 2003.
    doi:10.1109/TAP.2003.817983

    10. Simovski, C. R. and A. A. Sochava, "High-impedance surfaces based on self-resonant grids. Analytical modelling and numerical simulations," Progress In Electromagnetics Research, Vol. 43, 239-256, 2003.
    doi:10.2528/PIER03042801

    11. E., Rajo-Iglesias, O. Quevedo-Teruel, and L. Inclan-Sanchez, "Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1648-1655, Jun. 2008.
    doi:10.1109/TAP.2008.923306

    12. Fan, M. Y., R. Hu, Z. H. Feng, X. X. Zhang, and Q. Hao, "Advance in 2D-EBG research," Journal of Infrared Millimeter Waves, Vol. 22, No. 2, 2003.

    13. Lin, B.-Q., Q.-R. Zheng, and N.-C. Yuan, "A novel spiral high impedance surface structure for size reduction," Microwave and Optical Technology Letters, Vol. 49, No. 9, Sep. 2007.
    doi:10.1002/mop.22691

    14. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications: The Engineering Approach, Wiley-Interscience, 2006.

    15. Costa, F., S. Genovesi, and A. Monorchio, "On the bandwidth of high-impedance frequency selective surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1341-1344, 2009.
    doi:10.1109/LAWP.2009.2038346

    16. Capet, N., C. Martel, J. Sokoloff, and O. Pascal, "Reduction of the mutual coupling between two adjacent patches using various ideal High Impedance Surface positionings," Proceedings of the 3rd European Conference on Antennas and Propagation, EuCAP 2009, 3151-3154, Mar. 23--27, 2009.

    17. Capet, N., C. Martel, J. Sokoloff, and O. Pascal, "Study of the behaviour of a two layered high impedance surface with electromagnetic band gap," Proceedings of the Fourth European Conference on Antennas and Propagation, EuCAP 2010, 1-4, Apr. 12--16, 2010.

    18. Luukkonen, O., M. G. Silveirinha, A. B. Yakovlev, C. R. Simovski, I. S. Nefedov, and S. A. Tretyakov, "Effects of spatial dispersion on reflection from mushroom-type artificial impedance surfaces," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 11, 2692-2699, Nov. 2009.
    doi:10.1109/TMTT.2009.2032458

    19. Luukkonen, O., F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, "A thin electromagnetic absorber for wide incidence angles and both polarizations," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 3119-3125, Oct. 2009.
    doi:10.1109/TAP.2009.2028601

    20. Luukkonen, O., A. B. Yakovlev, C. R. Simovski, and S. A. Tretyakov, "Comparative study of surface waves on high-impedance surfaces with and without vias," IEEE Antennas and Propagation Society International Symposium, 1-4, Jul. 5--11, 2008.

    21. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed., Princeton University Press, 2008.

    22. Ngai, E. C. and D. J. Blejer, Mutual coupling analyses for small GPS adaptive arrays, MIT Lincoln Laboratory, 2001.

    23. Rahmat-Samii, Y., "EBG structures for low profile antenna designs: What have we learned?," Proceedings of the Second European Conference on Antennas and Propagation, EuCAP 2007, 1-5, Nov. 11--16, 2007.

    24. Pozar, D., "Considerations for millimeter wave printed antennas," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 5, 740-747, Sep. 1983.
    doi:10.1109/TAP.1983.1143124