A disc-loaded cylindrical waveguide structure for its potential use in a gyro-TWT amplifier operating in the TE mode is analysed for its electromagnetic behaviour. A modal matching technique is used to develop a dispersion relation in order to study the shape of the dispersion curve for wide device bandwidth. The band-pass characteristic of the structure has also been explored. The structure dispersion characteristic has been numerically plotted over a wide range of structure parameters to appreciate the role of individual parameter on the dispersion behaviour of the structure. It has been found that the disc-hole radius may be decreased and the structure periodicity increased for widening the device bandwidth. To validate the theoretical considerations, the structure is also simulated using commercially available simulation software ``CST Microwave Studio'' in order to observe the penetration of the travelling electric fields in different regions of the disc-loaded structure. A good agreement (<1%) has been achieved between the analytical and simulation results of dispersion characteristics. The analysis is extended further to derive the form factor which plays a very important role in the optimization of the electron-beam position for maximum interaction between RF wave and electron beam. Maximum coupling of the cyclotron wave to the resonant waveguide mode is found to be at the ratio of hollow beam radius to waveguide wall radius (rb/rW=0.44) for TE01, (rb/rW=0.39) for TE02 and (rb/rW=0.35) for TE03 mode. This article has been removed from the website because it has been found to violate plagiarism rule of our journal.
2. Rao, S. J., P. K. Jain, and B. N. Basu, "Amplification in gyro-travelling-wave tubes-dispersion relation and gain-bandwidth characteristics," J. IETE Technical Review, Vol. 13, 141-150, 1996.
3. Chu, K. R. and J. L. Hirshfield, "Comparative study of the axial and azimuthal bunching mechanism in electromagnetic cyclotron instabilities," Phys. Fluids, Vol. 21, 461-466, 1978.
doi:10.1063/1.862245
4. Sangster, A. J., "Small-signal analysis of the travelling-wave gyrotron using Pierce parameters," Proc. IEE, Part 1, Vol. 127, 45-52, 1980.
5. Sangster, A. J., "Small-signal bandwidth characteristics of a travelling wave gyrotron amplifier," Int. J. Electron., Vol. 51, 583-594, 1981.
doi:10.1080/00207218108901358
6. Ahn, S., "Gain and bandwidth of a gyrotron amplifier with tapered rectangular waveguide ," Int. J. Electronics, Vol. 53, 673-679, 1982.
doi:10.1080/00207218208901558
7. Wang, H., H. F. Li, Y. Luo, and R. Yan, "Theoritical and experimental investigation of a Ka-band gyro-TWT with lossy interaction structure," J. Infrared Milli Terahz Waves, Vol. 32, 172-185, 2011.
doi:10.1007/s10762-010-9760-7
8. Park, G. S., S. Y. Park, R. H. Kyser, C. M. Armstrong, A. K. Ganguly, and R. K. Parker, "Broadband operation of a Ka-band tapered gyro-travelling-wave amplifier," IEEE Trans. Plasma Sci., Vol. 22, 536-543, 1994.
doi:10.1109/27.338265
9. Choe, J. Y., H. S. Uhm, and S. Ahn, "Broad-band operation in a dielectric loaded gyrotron," IEEE Trans. Nuclear Sci., Vol. 28, 2918-2920, 1981.
doi:10.1109/TNS.1981.4331959
10. Agrawal, M., G. Singh, P. K. Jain, and B. N. Basu, "Analysis of a tapered vane loaded broad-band gyro-TWT," IEEE Trans. Plasma Sci., Vol. 29, 439-444, 2001.
doi:10.1109/27.928941
11. Ganguly, A. K. and S. Ahn, "Large-signal theory of a two-stage wideband gyro-TWT," IEEE Trans. Electron Dev., Vol. 31, 474-480, 1984.
doi:10.1109/T-ED.1984.21553
12. Park, G. S., J. J. Choi, S. Y. Park, C. M. Armstrong, A. K. Ganguly, R. H. Kyser, and R. K. Parker, "Gain broadening of two-stage tapered gyrotron travelling wave tube amplifier," Phys. Rev. Lett., Vol. 74, 2399-2402, 1995.
doi:10.1103/PhysRevLett.74.2399
13. Chu, K. R., Y. Y. Lau, L. R. Barnett, and V. L. Granatstein, "Theory of a wide-band distributed gyrotron travelling-wave amplifier," IEEE Trans. Electron Dev., Vol. 28, 866-871, 1981.
doi:10.1109/T-ED.1981.20301
14. Leou, K. C., D. B. McDermott, N. C. Luhmann, and Jr., "\Dielectric loaded wideband gyro-TWT," IEEE Trans. Plasma Sci., Vol. 20, 188-196, 1992.
doi:10.1109/27.142819
15. Choe, J. Y., H. S. Uhm, and S. Ahn, "Analysis of the wide band gyrotron amplifier in a dielectric loaded waveguide," J. Appl. Phys., Vol. 52, 4508-4516, 1981.
doi:10.1063/1.329378
16. Rao, S. J., P. K. Jain, and B. N. Basu, "Broadbanding of gyro-TWT by dispersion shaping through dielectric loading," IEEE Trans. Electron Dev., Vol. 43, 2290-2299, 1996.
doi:10.1109/16.544423
17. Tigelis, I. G., J. L. Vomvoridis, and S. Tzima, "High-frequency electromagnetic modes in a dielectric-ring loaded beam tunnel," IEEE Trans. Plasma Sci., Vol. 26, No. 3, 922-930, Jun. 1998.
doi:10.1109/27.700872
18. Latsas, G. P., J. L. Vomvoridis, K. A. Avramides, and I. G. Tigelis, "Beam-wave interaction in corrugated structures in the small-signal regime," IEEE Trans. Plasma Sci., Vol. 37, No. 10, 2020-2030, Oct. 2009.
doi:10.1109/TPS.2009.2029107
19. Anastasiou, G. P., G. P. Latsas, I. G. Tigelis, M. Dehler, P. Queffelec, and N. F. Dasyras, "Calculation of the electromagnetic waves in nonperiodic corrugated waveguides with dielectric loading," IEEE Trans. Plasma Sci., Vol. 32, No. 3, 1310-1317, Jun. 2004.
doi:10.1109/TPS.2004.828857
20. Denisov, G. G., V. L. Bratman, A. W. Cross, W. He, A. D. R. Phelps, K. Ronald, S. V. Samsonov, and C. G. Whyte, "Gyrotron travelling wave amplifier with a helical interaction waveguide," Phys. Rev. Lett., Vol. 81, 5680-5683, 1998.
doi:10.1103/PhysRevLett.81.5680
21. Denisov, G. G., V. L. Bratman, A. D. R. Phelps, and S. V. Samsonov, "Gyro-TWT with a helical operating waveguide: New possibilities to enhance efficiency and frequency bandwidth," IEEE Trans. Plasma Sci., Vol. 26, 508-518, 1998.
doi:10.1109/27.700785
22. Rao, S. J., P. K. Jain, and B. N. Basu, "Hybrid-mode helix-loading effects on gyro-travelling-wave tubes," Int. J. Electronics, Vol. 82, 663-675, 1997.
doi:10.1080/002072197135814
23. Choe, J. Y. and H. S. Uhm, "Theory of gyrotron amplifiers in disc or helix-loaded waveguides," Int. J. Electronics, Vol. 53, 729-741, 1982.
doi:10.1080/00207218208901564
24. Uhm, H. S. and J. Y. Choe, "Gyrotron amplifier in a helix loaded waveguide," Phys. Fluids, Vol. 26, 3418-3425, 1983.
doi:10.1063/1.864079
25. Singh, G., S. M. S. Ravi Chandra, P. V. Bhaskar, P. K. Jain, and B. N. Basu, "Analysis of dispersion and interaction impedance characteristics of an azimuthally-periodic vane-loaded cylindrical waveguide for a gyro-TWT," Int. J. Electronics, Vol. 86, 1463-1479, 1999.
doi:10.1080/002072199132554
26. Singh, K., P. K. Jain, and B. N. Basu, "Analysis of a coaxial waveguide corrugated with wedge-shaped radial vanes considering azimuthal harmonic effects," Progress In Electromagnetic Research, Vol. 47, 297-312, 2004.
doi:10.2528/PIER04010201
27. Leou, K. C., T. Pi, D. B. McDermott, and N. C. Luhmann, "Circuit design for a wide-band disk-loaded gyro-TWT amplifier," IEEE Trans. Plasma Sci., Vol. 26, 488-495, 1998.
doi:10.1109/27.700782
28. Chu, E. L. and W. W. Hansen, "The theory of disc-loaded wave guides," J. Appl. Phys., Vol. 18, 996-1008, 1982.
29. Mallios, S. A., G. P. Latsas, and I. G. Tigelis, "TE waves in arbitrary periodic slow-wave structures with rectangular grooves," J. Infrared Milli Terahz Waves, Vol. 30, 1113-1122, 2009.
doi:10.1007/s10762-009-9532-4
30. Guo, H., Y. Carmel, W. R. Lou, L. Chen, J. Rodgers, D. K. Abe, A. Bromborsky, W. Destler, and V. L. Granatstein, "A novel highly accurate synthetic technique for determination of the dispersive characteristics in periodic slow wave circuits," IEEE Trans. on Microwave Theory and Tech., Vol. 40, No. 11, 2086-2094, Nov. 1992.
doi:10.1109/22.168767
31. Zhang, Y., Y. Mo, and X. Zhou, "Rigorous analysis of the disk-loaded waveguide slow-wave structures," Int. J. Infrared and Millimeter Waves, Vol. 24, 525-535, 2003.
doi:10.1023/A:1022424630136
32. Yue, L., W. Wang, Y. Gong, and K. Zhang, "Analysis of coaxial ridged disk-loaded slow-wave structures for relativistic travelling wave tubes," IEEE Trans. Plasma Sci., Vol. 32, 1086-1092, 2004.
doi:10.1109/TPS.2004.828784
33. Baik, C. W., S. G. Jeon, D. H. Kim, A. K. Sinha, N. Sato, K. Yokoo, and G. S. Park, "Experimental verification of frequency multiplication in two-stage tapered gyro-TWT," 30th IEEE Int. Conf. on Plasma Science, ICOPS, 258, 2003.
34. Gallaghe, W. J., "Periodic structure studies," IEEE Trans. Nuclear Sci., Vol. 32, 2788-2790, 1985.
doi:10.1109/TNS.1985.4334182
35. Saha, P. K. and P. J. B. Clarricoats, "Propagation and radiation behaviour of corrugated coaxial horn feed," Proc. IEE, Vol. 118, 1177-1186, 1971.
36. Clarricoats, P. J. B. and P. K. Saha, "Propagation and radiation behaviour of corrugated feeds Part 1 --- Corrugated-waveguide feed," Proc. IEE, Vol. 118, 1167-1176, 1971.
37. Mikhin, S. G., Variational Methods in Mathematical Physics, Pergamon, New York, 1964.
38. Hahn, H., C. I. Goldstein, and W. Bauer, "On the theory of irisloaded waveguides," Int. J. Electronics and Comm., AEU, Vol. 30, 297-302, 1976.
39. Scharstein, R. W. and A. T. Adams, "Galerkin solution for the thin circular iris in a TE11-mode circular waveguide," IEEE Trans. on Microwave Theory and Tech., Vol. 36, 106-113, Jan. 1988.
doi:10.1109/22.3489
40. Das Gupta, D. and P. K. Saha, "Modal properties of quadrupleridged circular waveguide by Galerkin's method," Indian J. Pure and Appl. Phys., Vol. 22, 106-109, 1984.
41. Amari, S., J. Bornemann, A. Laisné, and R. Vahldieck, "Design and analysis of iris-coupled and dielectric-loaded 1/8-cut TE01-mode microwave bandpass filters," IEEE Trans. on Microwave Theory and Tech., Vol. 49, 413-421, 2001.
doi:10.1109/22.910544
42. Amari, S., R. Vahldieck, and J. Bornemann, "Analysis of propagation in periodically loaded circular waveguides," IEE Proc. Microw. Antennas Propag., Vol. 146, 50-54, 1999.
doi:10.1049/ip-map:19990140
43. Wagner, D., M. Thumm, and W. Kasparek, "Hybrid modes in highly oversized corrugated rectangular waveguides," Int. J. Infrared and Millimeter Waves, Vol. 20, 567-581, 1999.
doi:10.1023/A:1022632320517
44. Neilson, J. M., P. E. Latham, M. Caplan, and W. G. Lawson, "Determination of the resonant frequencies in a complex cavity using the scattering matrix formulation," IEEE Trans. on Microwave Theory and Tech., Vol. 37, No. 8, 1165-1170, Aug. 1989.
doi:10.1109/22.31074
45. Hahn, H., "On the analysis of periodic waveguide discontinuities by modal field matching," Int. J. Electronics and Comm. AEU, Vol. 32, 81-85, 1978.
46. Esteban, J. and J. M. Rebollar, "Characterization of corrugated waveguides by modal analysis," IEEE Trans. on Microwave Theory and Tech., Vol. 39, 937-943, 1991.
doi:10.1109/22.81662
47. Nusinovich, G. S., Introduction to the Physics of Gyrotrons, The Johns Hopkins University Press, Baltimore, Maryland, 2004.
48. Lee, J.-F., R. Palandech, and R. Mittra, "Modeling in three-dimensional discontinuities in waveguides using nonorthogonal FDTD algorithm," IEEE Trans. on Microwave Theory and Tech., Vol. 40, 346-352, Feb. 1992.
49. Kim, H. J., E. A. Nanni, M. A. Shapiro, J. R. Sirigiri, P. P. Woskow, and R. J. Temkin, "Amplification of picosecond pulses in a 140 GHz gyrotron travelling wave tube," Phys. Rev. Lett., Vol. 105, 135101-4, 2010.
doi:10.1103/PhysRevLett.105.181302
50. MATLAB: The Language of Technical Computing, User's Guide, The MathWorks, Natick, MA, www.mathworks.com.
51. CST Studio Suite 2008.00, User Manual, Germany, www.cst.com.