Vol. 36

Latest Volume
All Volumes
All Issues
2011-11-10

Simple Implementation of Arbitrarily Shaped Total-Field/Scattered-Field Regions in Finite-Difference Frequency-Domain

By Raymond C. Rumpf
Progress In Electromagnetics Research B, Vol. 36, 221-248, 2012
doi:10.2528/PIERB11092006

Abstract

The total-field/scattered-field (TF/SF) formulation is a popular technique for incorporating sources into electromagnetic models like the finite-difference frequency-domain (FDFD) method. It is versatile and simplifies calculation of waves scattered from a device. In the context of FDFD, the TF/SF formulation involves modifying all of the finite-difference equations that contain field terms from both the TF and SF regions in order to make the terms compatible. While simple in concept, modifying all of the equations for arbitrarily shaped TF/SF regions is tedious and no solution has been offered in the literature to do it in a straightforward manner. This paper presents a simple and efficient technique for implementing the TF/SF formulation that allows the TF/SF regions to be any shape and of arbitrary complexity. Its simplicity and versatility are demonstrated by giving several practical examples including a diffraction grating, a waveguide problem, and a scattering problem with a cylindrical wave source.

Citation


Raymond C. Rumpf, "Simple Implementation of Arbitrarily Shaped Total-Field/Scattered-Field Regions in Finite-Difference Frequency-Domain," Progress In Electromagnetics Research B, Vol. 36, 221-248, 2012.
doi:10.2528/PIERB11092006
http://test.jpier.org/PIERB/pier.php?paper=11092006

References


    1. Sun, , W., , K. Liu, and C. A. Balanis, "Analysis of singly and doubly periodic absorbers by frequency-domain finite-difference method," IEEE Trans. on Antennas and Propagation, Vol. 44, No. 6, 798-805, 1996.
    doi:10.1109/8.509883

    2. Wu, , S.-D. and E. N. Glytsis, "Volume holographic grating couplers: rigorous analysis by use of the finite-difference frequency-domain method," Applied Optics, Vol. 43, No. 4, 1009-1023, 2004.
    doi:10.1364/AO.43.001009

    3. Luo, , G. Q., , W. Hong, Z.-C. Hao, B. Liu, W. D. Li, and , "Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology ," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 12, 4035-4043, 2005.
    doi:10.1109/TAP.2005.860010

    4. Rumpf, , R. C., Design and optimization of nano-optical elements by coupling fabrication to optical behavior, 60-84 University of Central Florida, 2006.

    5. Merewether, , D. E., , R. Risher, and F. W. Smith, "On implementing a numeric Huygen's source sheme in a finite di®erence program to illuminate scattering bodies," IEEE Trans. on Nuclear Science, Vol. 27, 1829-1833, 1980.
    doi:10.1109/TNS.1980.4331114

    6. Umashankar, , K. R. and A. Taflove, "A novel method to analyze electromagnetic scattering of complex objects," IEEE Trans. on Electroman. Compat., Vol. 24, 397-405, 1982.
    doi:10.1109/TEMC.1982.304054

    7. Taffove, , A. , S. Hagness, and , Computational Electrodynamics: The Finite-di®erence Time-domain Method,, 3rd Ed., 186-220, Artech House, , Boston, 2005.

    8. Sacks, , Z. S., , D. M. Kinsland, R. Lee, and J.-F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. on Antennas and Propagation, Vol. 43, No. 12, 1460-1463, 1995.
    doi:10.1109/8.477075

    9. Marengo, , E. A., C. M. Rappaport, and E. L. Miller, "Optimum PML ABC conductivity pro¯le in FDFD," IEEE Trans. On Magnetics, Vol. 35, No. 3, 1506-1509, 1999.
    doi:10.1109/20.767253

    10. Arft, , C. M. , A. Knoesen, and , "Alternatives to the perfectly matched layer for waveguide simulation using the FDFD method," Electromagnetics, Vol. 25, No. 3, 177-186, 2005.
    doi:10.1080/02726340590915566

    11. Berenger, , J.-P., Perfectly Matched Layer (PML) for Computational Electromagnetics,, Morgan & Claypool, 2007.

    12. Balanis, , C. A, Advanced Engineering Electromagnetics, 1-31, Wiley, , New York, 1989..

    13. Yee, K. S., " Numerical solution of initial boundary value problems involving Maxwell'S equations in isotropic media," IEEE Trans. on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
    doi:10.1109/TAP.1966.1138693

    14. Taflove, , A., S. Hagness, and , Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., 58-84, Artech House, , Boston, , 2005.

    15. Rumpf, , R. C., , "Design and optimization of nano-optical elements by coupling fabrication to optical behavior," University of Central Florida, , 72-74, 2006..

    16. Yinchao, , C., , K. Sun, B. Beker, and R. Mittra, "Unified matrix presentation of Maxwell's and wave equations using generalized di®erential matrix operators," IEEE Trans. on Education, Vol. 41, No. 1, 61-69, 1998.
    doi:10.1109/13.660791

    17. Zhu, , Z. and T. G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers," Optics Express, Vol. 10, No. 7, 853-864, 2002.

    18. Guo, , S., , F. Wu, and S. Albin, "Photonic band gap analysis using finite-difference frequency-domain method," Optics Express, Vol. 12, No. 8, 1741-1746, 2004.
    doi:10.1364/OPEX.12.001741

    19. Sharkawy, , M. H., V. Demir, and A. Z. Elsherbeni, "Plane wave scattering from three dimensional multiple objects using the iterative multiregion technique based on the FDFD method," IEEE Trans. on Antennas and Propagation, Vol. 54, No. 2, 666-673, 2006.
    doi:10.1109/TAP.2005.863129

    20. Wu, , S.-D. and E. N. Glytsis, "Finite-number-of-periods holo-graphic gratings with finite-width incident beams: Analysis using the finite-difference frequency-domain method," J. Opt. Soc. Am. A, Vol. 19, No. 10, 2018-2029, 2002.
    doi:10.1364/JOSAA.19.002018

    21. Rumpf, , R. C., , A. Tal, and S. M. Kuebler, "Rigorous electromagnetic analysis of volumetrically complex media using the slice absorption method," J. Opt. Soc. Am. A, Vol. 24, No. 10, 3123-3134, 2007.
    doi:10.1364/JOSAA.24.003123

    22. Tal, , A., , Y.-S. Chen, H. E. Williams, R. C. Rumpf, and S. M. Kuebler, "Fabrication and characterization of three-dimensional copper metallodielectric photonic crystals," Optics Express, Vol. 15, No. 26, 18283-18293, 2007.
    doi:10.1364/OE.15.018283

    23. Jin, J. , J.-M. Jin, and , The Finite Element Method in Electromagnetics, 2nd Ed., Vol. 1, Wiley, , New York, , 2002.

    24. Helfert, S. F. , R. Pregla, and , "The method of lines: A versatile tool for the analysis of waveguide structures," Electromagnetics, Vol. 22, 615-637, 2002..
    doi:10.1080/02726340290084166

    25. Jamid, , H. A. and M. N. Akram, "Analysis of deep waveguide gratings: An e±cient cascading and doubling algorithm in the method of lines framework ," J. Lightwave Technol., Vol. 20, No. 7, 1204-1209, 2002.
    doi:10.1109/JLT.2002.800350

    26. Lee, , S. M., , "Finite-difference vectorial-beam-propagation method using Yee's discretization scheme for modal fields," J. Opt. Soc. Am. A,, Vol. 13, No. 7, 1369{133-1337, 1996.
    doi:10.1364/JOSAA.13.001369

    27. Cherif, , R., , M. Zghal, R. Chatta, and C. B. Neila, "Full vector beam propagation method modeling of dual core photonic crystal fibre couplers," Proc. SPIE,, Vol. 6182, 2006.

    28. Fallahkhair, A. B., , K. S. Li, and T. E. Murphy, , "Vector finite di®erence modesolver for anisotropic dielectric waveguides," J. Lightwave Technol.,, Vol. 26, No. 11, 1423-1431, 2008.
    doi:10.1109/JLT.2008.923643

    29. Berenger, , J.-P., "Evanescent waves in PML's: Origin of the numerical reflection in wave-structure interaction problems," IEEE Trans. on Antennas and Propagation,, Vol. 47, No. 10, 1497-1503, 1999.
    doi:10.1109/8.805891

    30. Ashcroft, N. W and N. D. Mermin, Solid State Physics, Holt, Rinehart, and Winston, , New York, , 1976..

    31. Moharam, M. G., , E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and effcient implementation of the rigorous coupled-wave analysis of binary grating," J. Opt. Soc. Am. A, Vol. 12, No. 5, 1068-1076, 1995.
    doi:10.1364/JOSAA.12.001068

    32. Moharam, , M. G., , D. A. Pommet, E. B. Grann, and T. K. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach," J. Opt. Soc. Am. A, , Vol. 12, No. 5, 1077-1086, 1995 .
    doi:10.1364/JOSAA.12.001077

    33. Rumpf, , R. C., , Design and optimization of nano-optical elements by coupling fabrication to optical behavior,, 125-152, Ph.D. Dissertation, University of Central Florida, , 2006.