A technique is described for the electromagnetic reconstruction of the location, shape, dielectric constant, and conductivity of buried homogeneous cylinders of elliptic cross-section. The inversion procedure is based on the Differential Evolution algorithm and the forward problem is solved using the single boundary integral method. Simulation results are presented which demonstrate that this hybrid approach can offer a conceptually simple yet efficient and reasonably robust method for the imaging of buried objects and voids.
2. Franchois, , A. and C. Pichot, "Microwave imaging-complex permittivity reconstruction with Levenberg-Marquardt method," IEEE Trans. on Antennas and Propagat.,, Vol. 45, 203-215, 1997.
doi:10.1109/8.560338
3. Bonnard, , S., P. Vincent, and M. Saillard, "Inverse obstacle scattering for homogeneous dielectric cylinders using a boundary finite-element method," IEEE Trans. on Antennas and Propagat., Vol. 48, 393-400, 2000.
doi:10.1109/8.841900
4. Haupt, , R. L. and S. E. Haupt, Practical Genetic Algorithms, Wiley, New York, 1998.
5. Rahmat-Samii, , Y. and E. Michielssen, "Electromagnetic Optimization by Genetic Algorithms," Wiley, 1999.
6. Chiu, , C. and P. Liu, "Electromagnetic transverse electric-wave inverse scattering of a conductor by a genetic algorithm," Int. J. Imag. Syst. Techn., Vol. 9, No. 5, 388-394, 1998.
doi:10.1002/(SICI)1098-1098(1998)9:5<388::AID-IMA9>3.0.CO;2-6
7. Qing, , A. and C. K. Lee, "Microwave imaging of a perfectly conducting cylinder using a real-coded genetic algorithm," IEE Proc. --- Microw. Antennas Propagat.,, Vol. 146, 421-425, 1999.
doi:10.1049/ip-map:19990674
8. Qing, , A., C. K. Lee, and L. Jen, "Microwave imaging of parallel perfectly conducting cylinders using real-coded genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 8, 1121-1143, 1999.
doi:10.1163/156939399X01276
9. Meng, Z. Q., T. Takenaka, and T. Tanaka, "Image reconstruction of two-dimensional impenetrable objects using genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 1, 95-118, 1999.
doi:10.1163/156939399X01654
10. Caorsi, , S. and M. Pastorino, "Two-dimensional microwave imaging approach based on a genetic algorithm," IEEE Trans. on Antennas and Propagat., Vol. 48, 370-373, 2000.
doi:10.1109/8.841897
11. Price, , K. V., "An introduction to differential evolution," New Ideas in Optimization, 79-108, 1999.
12. Qing, , A., , "Differential Evolution, Fundamentals and Applications in Electrical Engineering," Wiley, 2009.
13. Storn, , R. and K. Price, "Differential evolution --- A simple and e±cient heuristic for global optimization over continuous spaces," J. Glob. Opt., Vol. 11, 341-359, 1997.
doi:10.1023/A:1008202821328
14. Tvrdk, , J. , I. K·rivy, and , "Simple evolutionary heuristics for global optimization," Comput. Stat. Data Anal., Vol. 30, 345-352, 1999.
15. Michalski, , K. A., "Electromagnetic imaging of circular-cylindrical conductors and tunnels using a di®erential evolution algorithm," Microwave & Opt. Technol. Lett., Vol. 26, 2000.
16. Michalski, K. A., "Electromagnetic imaging of ellipticalcylindrical conductors and tunnels using a differential evolution algorithm," Microwave & Opt. Technol. Lett., Vol. 27, 2001.
17. Harrington, , R. F., "Boundary integral formulations for homogeneous material bodies," Journal of Electromagnetic Waves and Applications, Vol. 3, No. 1, 1-15, 1989.
doi:10.1163/156939389X00016
18. Morita, , N., N. Kumagai, and J. R. Mautz, Integral Equation Methods for Electromagnetics, Artech House, Norwood, MA, 1990.
19. Peterson, , A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, IEEE Press, New York, 1998.
20. Marx, , E., "Integral equation for scattering by a dielectric," IEEE Trans. on Antennas and Propagat., Vol. 32, 166-172, 1984.
doi:10.1109/TAP.1984.1143285
21. Glisson, , A. W., "An integral equation for electromagnetic scattering from homogeneous dielectric bodies," IEEE Trans. on Antennas and Propagat. , Vol. 32, 173-175, 1984.
doi:10.1109/TAP.1984.1143279
22. Mautz, , J. R., "A stable integral equation for electromagnetic scattering from homogeneous dielectric bodies," IEEE Trans. on Antennas and Propagat., Vol. 37, 1070-1071, 1989.
doi:10.1109/8.34145
23. Swatek, D. R. and I. R. Ciric, "Single source integral equation for wave scattering by multiply-connected dielectric cylinders," IEEE Trans. on Magn., Vol. 32, 878-881, 1996.
doi:10.1109/20.497381
24. Pelosi, , G. and A boundary element approach to the, "A boundary element approach to the scattering from inhomogeneous dielectric bodies," IEEE Trans. on Antennas and Propagat., Vol. 46, 602-603, 1998.
doi:10.1109/8.664131
25. Yeung, M. S., "Single integral equation for electromagnetic scattering by three-dimensional homogeneous dielectric objects," IEEE Trans. on Antennas and Propagat., Vol. 47, 1615-1622, 1999.
doi:10.1109/8.805907
26. Newman, , G., "Crosswell electromagnetic inversion using integral and di®erential equations ," Geophys., Vol. 60, No. 3, 899-911, 1995.
doi:10.1190/1.1443825
27. Ellis, , G. A. and I. C. Peden, "Cross-borehole sensing: Identification and localization of underground tunnels in the presence of a horizontal stratification," IEEE Trans. on Geosci. Remote Sensing, Vol. 35, 756-761, 1997.
doi:10.1109/36.581997
28. Bonnard, S., P. Vincent, and M. Saillard, "Cross-borehole inverse scattering using a boundary finite-element method," Inverse Problems, Vol. 14, No. 3, 521-534, 1998.
doi:10.1088/0266-5611/14/3/009
29. Choi, , H. and J. Ra, "Detection and identification of a tunnel by iterative inversion from cross-borehole CW measurements," Microwave & Opt. Technol. Lett., Vol. 21, No. 6, 458-465, 1999.
doi:10.1002/(SICI)1098-2760(19990620)21:6<458::AID-MOP17>3.0.CO;2-9
30. Caorsi, , S., M. Pastorino, and M. Raffetto, "EM field prediction inside lossy multilayer elliptic cylinders for biological-body modeling and numerical-procedure testing," IEEE Trans. on Biomed. Eng., Vol. 46, 1304-1309, 1999.
doi:10.1109/10.797990
31. Harrington, R. F., Time-harmonic Electromagnetic Field, McGraw-Hill, New York, 1961.
32. Arvas, , E. and J. R. Mautz, "On the non-uniqueness of the surface EFIE applied to multiple conducting and/or dielectric bodies," Arch. Elek. Ä Ubertragung. , Vol. 42, No. 6, 364-369, 1988.
33. Price, , K. and R. Storn, "Differential evolution," Dr. Dobb's J.,, 18-24, 1997.
34. Masters, , T. and W. Land, "A new training algorithm for the general regression neural network," 1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, 1990-1994, 1997.
doi:10.1109/ICSMC.1997.635142
35. Chiou, , J. and F.Wang, "Hybrid method of evolutionary algorithm for static and dynamic optimization problems with application to a fed-batch fermentation process," Comp. Chem. Engng., Vol. 23, 1277-1291, 1999.
doi:10.1016/S0098-1354(99)00290-2
36. Arvas, , E., S. M. Rao, and T. K. Sarkar, "E-field solution of TM-scattering from multiple perfectly conducting and lossy dielectric cylinders of arbitrary cross-section," IEE Proceedings, Part H --- Microwaves, Antennas and Propagation, Vol. 133, 115-121, 1986.
doi:10.1049/ip-h-2.1986.0019
37. Arvas, , E., Y. Qian, A. Sadigh, T. K. Sarkar, and F. Aslan, "E-field and H-¯eld solutions of TE scattering from multiple conducting and dielectric cylinders of arbitrary cross-section," Journal of Electromagnetic Waves and Applications, Vol. 3, No. 6, 513-530, 1989.
39. Crow, , J. A., "Quadrature of integrands with a logarithmic singularity," Math. Comp., Vol. 60, 297-301, 1993.
doi:10.1090/S0025-5718-1993-1155572-3
39. Chang, C. S. and D. Du, "Further improvement of optimisation method for mass transit signalling block-layout design using diffrential evolution," IEE Proc. --- Electr. Power Appl., Vol. 146, 559-569, 1999.
doi:10.1049/ip-epa:19990223