Vol. 55

Latest Volume
All Volumes
All Issues
2013-09-23

2D Fdtlm Hybridization with Modal Method

By Caroline Girard, Asmaa Zugari, and Nathalie Raveu
Progress In Electromagnetics Research B, Vol. 55, 23-44, 2013
doi:10.2528/PIERB13060311

Abstract

This article focuses on the 2D hybrid technique between the Frequency Domain Transmission Line Matrix Method (FDTLM) and the Wave Concept Iterative Procedure (WCIP). 3D hybridization has already been studied, but results may be improved through a better knowledge of method order. Consequently, developing 2D hybridization aims at understanding the hybridization in simplest problems, especially because Transverse Electric (TE) and Transverse Magnetic (TM) are uncoupled. Our study dwells on accuracy and convergence order of the 2D hybrid method, which will help for 3D mesh use. In this perspective, the scattering nodes and electromagnetic elds expressions are established in the 2D general case with anisotropic materials. As a result, validation examples are presented to check the approach.

Citation


Caroline Girard, Asmaa Zugari, and Nathalie Raveu, "2D Fdtlm Hybridization with Modal Method," Progress In Electromagnetics Research B, Vol. 55, 23-44, 2013.
doi:10.2528/PIERB13060311
http://test.jpier.org/PIERB/pier.php?paper=13060311

References


    1. Taflove, K. Umashankar and K. Umashankar, "A hybrid moment method/finite-difference time-domain approach to electromagnetic coupling and aperture penetration into complex geometries," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 4, 617-627, 1982.
    doi:10.1109/TAP.1982.1142860

    2. Paulsen, K. D., D. R. Lynch, and J. W. Strohbehn, "Three-dimensional finite, boundary, and hybrid elements solutions of the Maxwell equations for lossy dielectric media," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 4, 682-693, 1988.
    doi:10.1109/22.3572

    3. Sroka, J., H. Baggenstos, and R. Ballisti, "On the coupling of the generalized multipole technique with the finite element method," IEEE Transactions on Magnetics, Vol. 26, No. 2, 658-661, 1990.
    doi:10.1109/20.106403

    4. Yuan, X. C., D. R. Lynch, and J. W. Strohbehn, "Coupling of finite element and moment methods for electromagnetic scattering from inhomogeneous objects," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 3, 386-393, 1990.
    doi:10.1109/8.52246

    5. Yuan, X. C., "Three-dimensional electromagnetic scattering from inhomogeneous objects by the hybrid moment and finite element method," IEEE Transactions on Microwave Theory and Techniques , Vol. 38, No. 8, 1053-1058, 1990.
    doi:10.1109/22.57330

    6. Boyse, W. E. and A. A. Seidl, "A hybrid finite element and moment method for electromagnetic scattering from inhomogeneous objects," Proceeding of the 7th Annual Review of Progress in Applied Computational Electromagnetics, 160-169, 1991.

    7. Yuan, X. C., D. R. Lynch, and K. D. Paulsen, "Importance of normal field continuity in inhomogeneous scattering calculations," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 4, 638-642, 1991.
    doi:10.1109/22.76426

    8. Christopoulos, C., The Transmission-line Modeling Method,, IEEE Press, NJ, 1995.
    doi:10.1109/9780470546659

    9. Christopoulos, C., The Transmission-line Modeling (TLM) Method in Electromagnetic, Morgan and Claypool Publishers, CO, 2006.

    10. Jin, H. and R. Vahldieck, "Direct derivations of TLM symmetrical condensed node and hybrid symmetrical condensed node from Maxwell's equations using centered di®erencing and averaging," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 12, 2554-2561, 1994.
    doi:10.1109/22.339796

    11. Jin, H. and R. Vahldieck, "A new frequency-domain TLM symmetrical condensed node derived directly from Maxwell'sequations," IEEE Transactions on Microwave Theory and Techniques International Symposium, Vol. 2, 487-490, 1995.

    12. Raveu, N., T. P. Vuong, I. Terrasse, G.-P. Piau, G. Fontgalland and H. Baudrand, "Wave concept iterative procedure applied to cylinders," IEE Proceeding on Microwave Antenna and Propagation , Vol. 151, No. 5, 409-416, 2004.
    doi:10.1049/ip-map:20040763

    13. Wane, S., D. Bajon, H. Baudrand, and P. Gammand, "A new full-wave hybrid differential-integral approach for the investigation of multilayer structures including nonuniformly doped diffusions," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 1, 200-214, 2005.
    doi:10.1109/TMTT.2004.839905

    14. N'gongo, R. S. and H. Baudrand, "A new approach for microstrip active antennas using modal F.F.T-algorithm," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 1700-1703, 1999.

    15. Sadiku, M. N. O., "Numerical Techniques in Electromagnetics," CRC Press, 2001.

    16. Hesselbarth, J., "Passive microwave circuit elements analyzed with the frequency-domain TLM method," Thesis of Doctor of the Swiss Federal Institute of Technology Zurich, 2002.

    17. Azizi, M., H. Aubert, and H. Baudrand, "A new iterative method for scattering problems," Proceedings of the European Microwave Conference, 255-258, 1995.

    18. Zugari, A., M. Khalladi, M. I. Yaich, N. Raveu, and H. Baudrand, "New approach: WCIP and FDTLM hybridization," 2009 Mediterranean Microwave Symposium (MMS), 1-4, 2009.
    doi:10.1109/MMS.2009.5409774

    19. Glaoui, M., H. Trabelsi, H. Zairi, A. Gharsallah, and H. Baudrand, "A new computationally e±cient hybrid FDTLM-WCIP method," International Journal of Electronics, Vol. 96, No. 5, 537-548, 2009.
    doi:10.1080/00207210902738059

    20. Raveu, N. and O. Pigaglio, "Resolution de problemes hautes frequences par les schemas equivalents cours et exercices corriges," Editions Cepadues,, 2012.

    21. Girard, C., N. Raveu, R. Perrussel, and S. Lanteri, "Hybridation entre la WCIP et des methodes volumiques," Journees Nationales Microondes (JNM), 2013.
    doi:(in French)

    22. Nguyen, N. C., J. Peraire, and B. Cockburn, "Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations," Journal of Computational Physics, Vol. 230, No. 19, 7151-7175, 2011.
    doi:10.1016/j.jcp.2011.05.018