Due to the increasing complexity of metamaterial geometric structures, direct optimisation of these designs using conventional approaches, such as Gradient-based and evolutionary algorithms, are often impractical and limited. This is in part due to the inherently high computational cost associated with running multiple expensive high-fidelity full-wave simulations, commonly required to optimise the constitutive parameters of a single metamaterial particle. In order to alleviate this issue, we propose an efficient optimisation approach which exploits the Co-Kriging methodology, such that we can successfully couple varying levels of discretisation and solver accuracy obtained from a 3d full wave numerical solver suite. In contrast to other optimisation strategies, we investigate the improvement in efficiency of optimisation through the use of the LOLA-Voronoi, in conjunction with Expected Improvement and the embedding of a trustregion framework within our optimisation algorithm, to accelerate the convergence of Co-Kriging. Finally, the effectiveness of the outlined algorithm will be demonstrated by a quantitative evaluation of the performance of optimised planar 2D negative index of refraction structures.
2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184
3. Bradley, P. J., "Quasi-Newton model-trust region approach to surrogate-based optimisation of planar metamaterial structures," Progress In Electromagnetics Research B, Vol. 47, 1-17, 2013.
4. Huang, R., Z.-W. Li, L. B. Kong, L. Liu, and S. Matitsine, "Analysis and design of an ultra-thin metamaterial absorber," Progress In Electromagnetics Research B, Vol. 14, 407-429, 2009.
doi:10.2528/PIERB09040902
5. Koziel, S., J. W. Bandler, and Q. S. Cheng, "Robust trust-region space-mapping algorithms for microwave design optimization," IEEE Trans. on Microwave Theory and Techniques, Vol. 58, No. 8, 2166-2174, 2010.
doi:10.1109/TMTT.2010.2052666
6. Koziel, S. and D. Echeverra Ciaurri, "Reliable simulation-driven design optimization of microwave structures using manifold mapping," Progress In Electromagnetics Research B, Vol. 26, 361-382, 2010.
doi:10.2528/PIERB10090202
7. Krige, D. G., "A statistical approach to some basic mine valuation problems on the witwatersrand," problems on the witwatersrand, Metallurgical and Mining Society of South Africa, Vol. 52, No. 6, 119-139, 1951.
8. Broomhead, D. S. and D. Lowe, "Multivariable functional interpolation and adaptive networks," Complex Systems, Vol. 2, 321-355, 1988.
9. Box, G. E. P. and N. R. Draper, "Empirical Model-building and Response Surface," John Wiley & Sons, Inc., 1986.
10. Jones, D. R., M. Schonlau, and W. J. Welch, "Effcient global optimization of expensive black-box functions," Journal of Global Optimization, Vol. 13, No. 4, 455-492, 1998.
doi:10.1023/A:1008306431147
11. Jones, D. R., "A taxonomy of global optimization methods based on response surfaces," Journal of Global Optimization, Vol. 21, No. 4, 345-383, 2001.
doi:10.1023/A:1012771025575
12. Forrester, A., A. Sobester, and A. Keane, Engineering Design via Surrogate Modelling: A Practical Guide, Wiley, 2008.
doi:10.1002/9780470770801
13. Forrester, A. I. J., A. Sbester, and A. J. Keane, "Multifidelity ptimization via surrogate modelling," Proceedings of the Royal Sociery A, Vol. 463, No. 2088, 3251-3269, 2007.
doi:10.1098/rspa.2007.1900
14. Deschrijver, D., K. Crombecq, H. M. Nguyen, and T. Dhaene, "Adaptive sampling algorithm for macromodeling of parameterized S-parameter responses," IEEE Trans. on Microwave Theory and Techniques, Vol. 59, No. 1, 39-45, 2011.
doi:10.1109/TMTT.2010.2090407
15. Koziel, S., L. Leifsson, I. Couckuyt, and T. Dhaene, "Robust variable-fidelity optimization of microwave filters using Co-Kriging and trust regions," Microwave and Optical Technology Letters, Vol. 55, No. 4, 765-769, 2013.
doi:10.1002/mop.27447
16. Liu, R., A. Degiron, J. J. Mock, and D. R. Smith, "Negative index material composed of electric and magnetic resonators," Applied Physics Letters, Vol. 90, No. 26, 263504-263504-3, 2007.
doi:10.1063/1.2752120
17. Zhou, J., E. N. Economon, T. Koschny, and C. M. Soukoulis, "Unifying approach to left-handed material design," Optics Letters, Vol. 31, No. 24, 3620-3622, 2006.
doi:10.1364/OL.31.003620
18. Withayachumnankul, W., C. Fumeaux, and D. Abbott, "Near-field interactions in electric inductive-capacitive resonators for metamaterials," Journal of Physics D: Applied Physics, Vol. 45, No. 48, 485101, 2012.
doi:10.1088/0022-3727/45/48/485101
19. Liu, H., T. Li, S. M. Wang, and S. N. Zhu, "Magnetic plasmon modes introduced by the coupling effect in metamaterials," 2008 International Workshop on Metamaterials, 50-52, 2008.
doi:10.1109/META.2008.4723529
20. Kante, B., S. N. Burokur, A. Sellier, A. de Lustrac, and J.-M. Lourtioz, "Controlling plasmon hybridization for negative refraction metamaterials," Phys. Rev. B, Vol. 79, 075121, 2009.
doi:10.1103/PhysRevB.79.075121
21. Zhou, J., T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, "Experimental demonstration of negative index of refraction," Applied Physics Letters, Vol. 88, No. 22, 221103-221103-3, 2006.
doi:10.1063/1.2208264
22. Zhou, J., L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, "Negative index materials using simple short wire pairs," Phys. Rev. B, Vol. 73, 041101, 2006.
doi:10.1103/PhysRevB.73.041101
23. Zaoui, W. S., K. Chen, W. Vogel, and M. Berroth, "Low loss broadband polarization independent fishnet negative index metamaterial at 40 GHz," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 10, No. 3, 245-250, 2012.
doi:10.1016/j.photonics.2011.02.003
24. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, 137404, 2005.
doi:10.1103/PhysRevLett.95.137404
25. Ding, P., E. J. Liang, W. Q. Hu, L. Zhang, Q. Zhou, and Q. Z. Xue, "Numerical simulations of terahertz double-negative metamaterial with isotropic-like fishnet structure," Photonics and Nanostructures --- Fundamentals and Applications, Vol. 7, No. 2, 92-100, 2009.
doi:10.1016/j.photonics.2008.12.005
26. Shen, N.-H., L. Zhang, T. Koschny, B. Dastmalchi, M. Kafesaki, and C. M. Soukoulisand C. M. Soukoulis, "Discontinuous design of negative index metamaterials based on mode hybridization," Applied Physics Letters, Vol. 101, 081913, 2012.
doi:10.1063/1.4748361
27. Smith, D. R., D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.
doi:10.1103/PhysRevE.71.036617
28. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932
29. Varadan, V. V. and R. Ro, "Unique retrieval of complex permittivity and permeability of dispersive materials from re°ection and transmitted ¯elds by enforcing causality," IEEE Trans. on Microwave Theory and Techniques, Vol. 55, No. 10, 2224-2230, 2007.
doi:10.1109/TMTT.2007.906473
30. Barroso, J. J. and U. C. Hasar, "Constitutive parameters of a ," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 33, No. 2, 237-244, 2012.
doi:10.1007/s10762-011-9869-3
31. Hsieh, F.-J. and W.-C. Wang, "Full extraction methods to retrieve e®ective refractive index and parameters of a bianisotropic metamaterial based on material dispersion models," Journal of Applied Physics, Vol. 112, No. 6, 064907, 2012.
doi:10.1063/1.4752753
32. Alu, A., "Restoring the physical meaning of metamaterial constitutive parameters," Phys. Rev. B, Vol. 83, 081102, 2011.
doi:10.1103/PhysRevB.83.081102