Vol. 58

Latest Volume
All Volumes
All Issues
2014-01-07

Lightning Responses on a Finite Cylindrical Enclosure

By Kenneth Chien-Ying Chen, Larry Kevin Warne, and Kelvin S. H. Lee
Progress In Electromagnetics Research B, Vol. 58, 19-33, 2014
doi:10.2528/PIERB13082004

Abstract

The voltage on a single-turn loop inside an enclosure characterizes the enclosure shielding effectiveness against a lightning insult. In this paper, the maximum induced voltage on a singleturn loop inside an enclosure from lightning coupling to a metal enclosure wall is expressed in terms of two multiplicative factors: (A) the normalized enclosure wall peak penetration ratio (i.e., ratio of the peak interior electric field multiplied by the sheet conductance to the exterior magnetic field) and (B) the DC voltage on an ideal optimum coupling loop assuming the ideal penetration ratio of one. As a result of the decomposition, the variation of the peak penetration ratio (A) for different coupling mechanisms is found to be small; the difference in the maximum voltage hence arises from the DC voltage on the optimum coupling loop (B). Maximum voltages on an optimum coupling loop inside a finite cylinder enclosure for direct attachment and a lightning line source at different distances from the enclosure are given in Table 3.

Citation


Kenneth Chien-Ying Chen, Larry Kevin Warne, and Kelvin S. H. Lee, "Lightning Responses on a Finite Cylindrical Enclosure," Progress In Electromagnetics Research B, Vol. 58, 19-33, 2014.
doi:10.2528/PIERB13082004
http://test.jpier.org/PIERB/pier.php?paper=13082004

References


    1. Johnson, W. A., L. K. Warne, K. C. Chen, and E. M. Gurrola, "Linear diffusion and internal voltages in conducting enclosures subjected to a direct lightning strike," Electromagnetics, Vol. 15, 189-207, 1995.
    doi:10.1080/02726349508908411

    2. Warne, L. K., W. A. Johnson, and K. C. Chen, "Maximum interior voltage and magnetic field penetration through a linear conducting layer," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 4, 569-598, 1995.

    3. Chen, K. C., Y. T. Lin, L. K. Warne, and K. O. Merewether, "Linear diffusion into a faraday cage," Progress In Electromagnetics Research M, Vol. 23, 299-311, 2012.
    doi:10.2528/PIERM12010410

    4. Chen, K. C., Y. T. Lin, L. K. Warne, and K. O. Merewether, "Linear diffusion into a faraday cage," SAND2011-8012, 2011.
    doi:http://prod.sandia.gov/techlib/accesscontrol.cgi/2011/118012.pdf

    5. Lee, K. S. H., EMP Interaction: Principle, Techniques, and Reference Data, 559-573, Hemisphere Publishing Corporation and Taylor & Francis, 1995.

    6. Bedrosian, G. and K. H. S. Lee, "EMP penetration through metal skin panels and into aircraft cavities ," AFWL Interaction Note 314, 1976.
    doi:www.eceunmedu/summa/notes.

    7. Lee, K. S. H. and G. Bedrosian, "Diffusive electromagnetic penetration into metallic enclosures," IEEE Transactions on Antennas and Propagation, Vol. 27, No. 2, 194-198, 1979.
    doi:10.1109/TAP.1979.1142064

    8. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, 1026, National Bureau of Standards, Washington DC, 2010.