Vol. 55

Latest Volume
All Volumes
All Issues
2013-09-24

Magnetic Field Distribution and Levitation Force Calculation in Htsc-Pmg Maglev Vehicles

By Kamel Boughrara and Rachid Ibtiouen
Progress In Electromagnetics Research B, Vol. 55, 63-86, 2013
doi:10.2528/PIERB13082705

Abstract

This paper presents a new analytical method for predicting magnetic field distribution and levitation force in three configurations of high temperature superconducting (HTSC) maglev vehicles. The permanent magnet guideways (PMG) are composed with ferromagnetic materials and NdFeB permanent magnets. The proposed analytical model is based on the resolution in each region of Laplace's and Poisson's equations by using the technique of separation of variables. For the study, we consider the HTSC as a perfect diamagnetic material. The boundary conditions and Fourier series expansion of interfaces conditions between each region are used to find the solution of magnetic field. The developed analytical method is extended to compute the magnetic field distribution generated by the three types of PMGs when removing the HTSC bulk. Magnetic field distribution and vertical force obtained analytically are compared with those issued from the finite element method (FEM).

Citation


Kamel Boughrara and Rachid Ibtiouen, "Magnetic Field Distribution and Levitation Force Calculation in Htsc-Pmg Maglev Vehicles," Progress In Electromagnetics Research B, Vol. 55, 63-86, 2013.
doi:10.2528/PIERB13082705
http://test.jpier.org/PIERB/pier.php?paper=13082705

References


    1. Zhang, J., Y. Zeng, J. Cheng, and X. Tang, "Optimization of permanent magnet guideway for HTS maglev vehicle with numerical methods," IEEE Trans. on Applied Superconductivity, Vol. 18, No. 3, 1681-1686, 2008.
    doi:10.1109/TASC.2008.2000900

    2. Deng, Z., J. Zheng, J. Li, G. Ma, Y. Lu, Y. Zhang, S. Wang, and J. Wang, "Superconducting bulk magnet for maglev vehicle: Stable levitation performance above permanent magnet guideway," Materials Science and Engineering B, Vol. 151, 117-121, 2008.
    doi:10.1016/j.mseb.2008.03.011

    3. Liu, L., J.Wang, S.Wang, L.Wang, and J. Li, "Flux concentrator optimization of PMG for high-temperature superconducting maglev vehicle system," J. Low Temperature Physics, Vol. 157, 67-72, 2009.
    doi:10.1007/s10909-009-9926-7

    4. Del-Valle, N., "Magnet guideways for superconducting maglevs: Comparison between Halbach-type and conventional arrangements of permanent magnets," J. Low Temperature Physics, Vol. 162, 62-71, 2011.
    doi:10.1007/s10909-010-0225-0

    5. Dias, D. H. N., G. G. Sotelo, F. Sass, E. S. Motta, R. de Andrade, Jr., and R. M. Stephan, "Dynamical tests in a linear superconducting magnetic bearing," Physics Procedia, Vol. 36, 1049-1054, 2012.
    doi:10.1016/j.phpro.2012.06.104

    6. Stephan, R. M., R. Nicolsky, M. A. Neves, A. C. Ferreira, R. de Andrade, Jr., M. A. Cruz Moreira, M. A. Rosario, and O. J. Machado, "A superconducting levitation vehicle prototype," Physica C, Vol. 408, 932-934, 2004.
    doi:10.1016/j.physc.2004.03.169

    7. Jin, J., L. Zheng, Y. Guo, W. Xu, and J. Zhu, "Analysis and experimental validation of an HTS linear synchronous propulsion prototype with HTS magnetic suspension," Physica C, Vol. 471, 520-527, 2011.
    doi:10.1016/j.physc.2011.05.250

    8. Werfel, F. N., U. Floegel-Delor, R. Rothfeld, T. Riedel, D. Wippich, B. Goebel, and P. Schirrmeister, "Bulk superconductors in mobile application," Physics Procedia, Vol. 36, 948-952, 2012.
    doi:10.1016/j.phpro.2012.06.235

    9. Werfel, F. N., U. Floegel-Delor, R. Rothfeld, T. Riedel, B. Goebel, D. Wippich, and P. Schirrmeister, "Superconductor bearings, flywheels and transportation," Superconductor Science and Technology, Vol. 25, 1-16, 2012.

    10. Male, G., T. Lubin, S. Mezani, and J. Leveque, "Analytical calculation of the flux density distribution in a superconducting reluctance machine with HTS bulks rotor," Mathematics and Computers in Simulation, 1-14, 2013.

    11. Motta, E. S., R. M. Stephan, J. H. Norman, H. C. Ramos, G. G. Sotelo, and D. H. N. Dias, "Optimization of superconducting magnetic rail using a feasible direction interior point algorithm," International Conference on Engineering Optimization, 1-5, 2008.

    12. Li, W., K. T. Chau, and J. Li, "Simulation of a tubular linear magnetic gear using HTS bulks for field modulation," IEEE Trans. on Applied Superconductivity, Vol. 21, No. 3, 1167-1170, 2011.
    doi:10.1109/TASC.2010.2080255

    13. Motta, E. S., D. H. N. Dias, G. G. Sotelo, H. O. C. Ramos, J. H. Norman, and R. M. Stephan, "Optimization of a linear superconducting levitation system," IEEE Trans. on Applied Superconductivity, Vol. 21, No. 5, 3548-3554, 2011.
    doi:10.1109/TASC.2011.2161986

    14. Barba, P. D. and R. Palka, "Optimization of the HTSC-PM interaction in magnetic bearings by a multiobjective design," Studies in Computational Intelligence, Vol. 119, 83-90, 2008.
    doi:10.1007/978-3-540-78490-6_10

    15. Palka, R., "Modeling of high temperature superconductors and their practical applications," International Compumag Society Newsletter, Vol. 12, No. 3, 3-12, 2005.

    16. Lu, Y., X. Bai, Y. Ge, and J. Wang, "Influence of thickness on the levitation force of high-Tc bulk over a permanent magnetic guideway with numerical method ," J. Supercond Nov. Magn., Vol. 24, 1967-1970, 2011.
    doi:10.1007/s10948-011-1154-0

    17. Dias, D. H. N., E. S. Motta, G. G. Sotelo, and R. Andrade, Jr., "Experimental validation of field cooling simulations for linear superconducting magnetic bearings," Superconductor Science and Technology, Vol. 23, 1-6, 2010.

    18. Dias, D. H. N., E. S. Motta, G. G. Sotelo, R. Andrade, R. M. Stephane, L. Kuehn, O. Haas, and L. Schultz, "Simulations and tests of superconducting linear bearings for a MAGLEV prototype," IEEE Trans. on Applied Superconductivity, Vol. 19, No. 3, 2120-2123, 2009.
    doi:10.1109/TASC.2009.2019203

    19. Jin, J. X., L. H. Zheng, Y. G. Guo, J. G. Zhu, C. Grantham, C. C. Sorrel, and W. Xu, "High-temperature superconducting linear synchronous motors integrated with HTS magnetic levitation components," IEEE Trans. on Applied Superconductivity, Vol. 22, No. 5, 5202617, 2012.
    doi:10.1109/TASC.2012.2210893

    20. Ma, G.-T., "Considerations on the finite-element simulation of high-temperature superconductors for magnetic levitation purposes," IEEE Trans. on Applied Superconductivity, Vol. 23, No. 5, 3601609, 2013.
    doi:10.1109/TASC.2013.2259488

    21. Wang, S., J. Zheng, H. Song, X.Wang, and J.Wang, "Experiment and numerical calculation of high temperature superconducting maglev," IEEE Trans. on Applied Superconductivity , Vol. 15, No. 2, 2277-2280, 2005.
    doi:10.1109/TASC.2005.849630

    22. Zheng, J., H. Song, J. Wang, S. Wang, M. Liu, and H. Jing, "Numerical method to the excited high-tc superconducting levitation system above the NdFeB guideway," IEEE Trans. on Magnetics, Vol. 42, No. 4, 947-950, 2006.
    doi:10.1109/TMAG.2006.871639

    23. Dias, D. H. N., G. G. Sotelo, and R. Andrade, "Study of the lateral force behavior in a fild cooled superconducting linear bearing," IEEE Trans. on Applied Superconductivity, Vol. 21, No. 3, 1533-1537, 2011.
    doi:10.1109/TASC.2010.2090635

    24. Costamagna, E., P. D. Barba, M. E. Mognaschi, and A. Savini, "Fast algorithms for the design of complex-shape devices in electromechanics," Computational Methods for Electrical Devices Design, Vol. 327, 59-86, 2010.
    doi:10.1007/978-3-642-16225-1_4

    25. Boughrara, K., T. Lubin, R. Ibtiouen, and N. Benallal, "Analytical calculation of parallel double excitation and spoke-type permanent-magnet motors; simplified versus exact model," Progress In Electromagnetics Research B, Vol. 47, 145-178, 2013.

    26. Lubin, T., K. Berger, and A. Rezzoug, "Inductance and force calculation for axisymmetric coil systems including an iron core of finite length," Progress In Electromagnetics Research B, Vol. 41, 377-396, 2012.

    27. Sotelo , G. G., D. H. N. Dias, R. Andrade, Jr., R. M. Stephane, N. Del-Valle, A. Sanchez, C. Navau, and D. Chen, "Experimental and theoretical levitation forces in a superconducting bearing for a real-scale maglev system," IEEE Trans. on Applied Superconductivity, Vol. 21, No. 5, 3532-3540, 2011.
    doi:10.1109/TASC.2011.2159114

    28. Sotelo, G. G., D. H. N. Dias, O. J. Machado, E. D. David, R. Andrade, Jr., R. M. Stephane, and G. C. Costa, "Experiments in a real scale maglev vehicle prototype," Journal of Physics: Conference Series, Vol. 234, No. 032054, 1-7, 2010.

    29. Sotelo, G. G., R. de Andrade, Jr., D. H. N. Dias, A. C. Ferreira, F. Costa, O. J. Machado, R. A. H. de Oliveira, M. D. A. Santos, and R. M. Ste, "Tests with one module of the Brazilian Maglev-Cobra vehicle," IEEE Trans. on Applied Superconductivity , Vol. 23, No. 3, 3601204, 2013.
    doi:10.1109/TASC.2013.2237875

    30. Wang, J., S. Wang, and J. Zheng, "Recent development of high temperature superconducting maglev system in China," IEEE Trans. on Applied Superconductivity, Vol. 19, No. 3, 2142-2142, 2009.
    doi:10.1109/TASC.2009.2018110

    31. Meeker, D. C., Finite Element Method Magnetics, Ver. 4.2 (April 1, 2009 Build).
    doi:http://www.femm.info