Vol. 56

Latest Volume
All Volumes
All Issues
2013-10-24

Magnetic-Dipolar-Mode Oscillations for Near- and Far-Field Manipulation of Microwave Radiation (Invited Paper)

By Eugene O. Kamenetskii, Roman Joffe, Maksim Berezin, Guy Vaisman, and Reuven Shavit
Progress In Electromagnetics Research B, Vol. 56, 51-88, 2013
doi:10.2528/PIERB13092206

Abstract

There has been a surge of interest in the subwavelength confinement effects of the electromagnetic fields. Based on these effects, one can obtain new behaviors of the near- and farfield radiation. It is well known that in optics, the subwavelength confinement can be obtained due to surface-plasmon (or electrostatic) oscillations in metal structures. This paper is a review of recent studies on the subwavelength confinement in microwaves due to magnetic-dipolarmode (MDM) [or magnetostatic (MS)] oscillations in small ferrite samples. MDM oscillations in a mesoscopic ferrite-disk particle are quantized oscillations, which are characterized by energy eigenstates. The field structures are distinguished by power-flow vortices and non-zero helicity. Also in vacuum, the near fields originated from MDM particles are designated by topologically distinctive power-flow vortices, non-zero helicity, and a torsion degree of freedom. To differentiate such field structures from regular electromagnetic (EM) field structures, we term them as magnetoelectric (ME) fields. In a pattern of the microwave field scattered by a MDM ferrite disk and MDM-disk arrays, one can observe rotating topological-phase dislocations. This opens a perspective for creation of engineered electromagnetic fields with unique symmetry properties. In the near-field applications, we propose novel microwave sensors for material characterization, biology, and nanotechnology. Strong energy concentration and unique topological structures of the near fields originated from the MDM resonators allow effective measuring chiral properties of materials in microwaves. Generating far-field orbital angular momenta from near-field microwave chirality of MDM structures can be a subject of a great interest. Realization of such vortex generators opens perspective for novel microwave systems with topological-phase modulation.

Citation


Eugene O. Kamenetskii, Roman Joffe, Maksim Berezin, Guy Vaisman, and Reuven Shavit, "Magnetic-Dipolar-Mode Oscillations for Near- and Far-Field Manipulation of Microwave Radiation (Invited Paper)," Progress In Electromagnetics Research B, Vol. 56, 51-88, 2013.
doi:10.2528/PIERB13092206
http://test.jpier.org/PIERB/pier.php?paper=13092206

References


    1. Jackson, J. D., "Classical Electrodynamics," Wiley, 1975.

    2. Landau, L. D. and E. M. Lifshitz, "Electrodynamics of Continuous Media,", 1984.

    3. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
    doi:10.1038/nature01937

    4. Lee, B., I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, "Review on subwavelength confinement of light with plasmonics," J. Mod. Opt., Vol. 57, No. 16, 1479-1497, 2010.
    doi:10.1080/09500340.2010.506985

    5. Ahn, W., S. V. Boriskina, Y. Hong, and B. M. Reinhard, "Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices," Nano Lett., Vol. 12, 219-227, 2012.
    doi:10.1021/nl203365y

    6. Ruting, F., A. I. Fernandez-Domnguez, L. Martin-Moreno, and F. J. Garcia-Vidal, "Subwavelength chiral surface plasmons that carry tuneable orbital angular momentum," Phys. Rev. B, Vol. 86, 075437, 2012.
    doi:10.1103/PhysRevB.86.075437

    7. Tang, Y. and A. E. Cohen, "Optical chirality and its interaction with matter," Phys. Rev. Lett., Vol. 104, 163901, 2010.
    doi:10.1103/PhysRevLett.104.163901

    8. Hendry, E., T. Carpy, J. Johnston, M. PoplandR. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, "Ultrasensitive detection and characterization of biomolecules using superchiral fields," Nat. Nanotechnol., Vol. 5, 783-787, 2010.
    doi:10.1038/nnano.2010.209

    9. Hentschel, M., M. Schaferling, T. Weiss, N. Liu, and H. Giessen, "Three-dimensional chiral plasmonic oligomers," Nano Lett., Vol. 12, 2542-2547, 2012.
    doi:10.1021/nl300769x

    10. Gorodetski, Y., A. Drezet, C. Genet, and T. W. Ebbesen, "Generating far-field orbital angular momenta from near-field optical chirality," Phys. Rev. Lett., Vol. 110, 203906, 2013.
    doi:10.1103/PhysRevLett.110.203906

    11. Miroshnichenko, A. E., S. Plach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, 2257-2298, 2010.
    doi:10.1103/RevModPhys.82.2257

    12. Luk'yanchuk, B., N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nature Mater., Vol. 9, 707-715, 2010.
    doi:10.1038/nmat2810

    13. Gurevich, A. and G. Melkov, Magnetic Oscillations and Waves, CRC Press, New York, 1996.

    14. Kamenetskii, E. O., "Energy eigenstates of magnetostatic waves and oscillations," Phys. Rev. E, Vol. 63, 066612, 2001.
    doi:10.1103/PhysRevE.63.066612

    15. Kamenetskii, E. O., M. Sigalov, and R. Shavit, "Quantum confinement of magnetic-dipolar oscillations in ferrite discs," J. Phys.: Condens. Matter, Vol. 17, 2211-2231, 2005.
    doi:10.1088/0953-8984/17/13/018

    16. Kamenetskii, E. O., "Vortices and chirality of magnetostatic modes in quasi-2D ferrite disc particles," J. Phys. A: Math. Theor., Vol. 40, 6539-6559, 2007.
    doi:10.1088/1751-8113/40/24/017

    17. Kamenetskii, E. O., "Helical-mode magnetostatic resonances in small ferrite particles and singular metamaterials," J. Phys.: Condens. Matter, Vol. 22, 486005, 2010.
    doi:10.1088/0953-8984/22/48/486005

    18. Kamenetskii, E. O., M. Sigalov, and R. Shavit, "Manipulating microwaves with magnetic-dipolar-mode vortices," Phys. Rev. A, Vol. 81, 053823, 2010.
    doi:10.1103/PhysRevA.81.053823

    19. Kamenetskii, E. O., R. Joffe, and R. Shavit, "Coupled states of electromagnetic fields with magnetic-dipolar-mode vortices: MDM-vortex polaritons," Phys. Rev. A, Vol. 84, 023836, 2011.
    doi:10.1103/PhysRevA.84.023836

    20. Kamentskii, E. O., "Microwave magnetoelectric fields," arXiv:1111.4359, 2011.

    21. Kamenetskii, E. O., R. Joffe, and R. Shavit, "Microwave magnetoelectric fields and their role in the matter-field interaction," Phys. Rev. E, Vol. 87, 023201, 2013.
    doi:10.1103/PhysRevE.87.023201

    22. Berezin, M., E. O. Kamenetskii, and R. Shavit, "Topological phase effects and path-dependent interference in microwave structures with magnetic-dipolar-mode ferrite particles," J. Opt., Vol. 14, 125602, 2012.
    doi:10.1088/2040-8978/14/12/125602

    23. Kamenetskii, E. O., G. Vaisman, and R. Shavit, "Fano resonances of microwave structures with embedded magneto-dipolar quantum dots," arXiv:1309.2792, 2013.

    24. McDonald, K. T., "An electrostatic wave," arXiv:physics/0312025, 2003.

    25. McDonald, K. T., "Magnetostatic spin waves," arXiv:physics/0312026, 2003.

    26. Sondergaard, T. and S. Bozhevolnyi, "Slow-plasmon resonant nanostructures: Scattering and field enhancements," Phys. Rev. B, Vol. 75, 073402, 2007.
    doi:10.1103/PhysRevB.75.073402

    27. Pelton, M., J. Aizpurua, and G. Bryant, "Metal-nanoparticle plasmonics," Laser & Photon. Rev., Vol. 2, 136-159, 2008.
    doi:10.1002/lpor.200810003

    28. Stockman, M. I., S. V. Faleev, and D. J. Bergman, "Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?," Phys. Rev. Lett., Vol. 87, 167401, 2001.
    doi:10.1103/PhysRevLett.87.167401

    29. Li, K., M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an e±cient nanolens," Phys. Rev. Lett., Vol. 91, 227402, 2003.
    doi:10.1103/PhysRevLett.91.227402

    30. Bergman, D. J. and D. Stroud, "Theory of resonances in the electromagnetic scattering by macroscopic bodies," Phys. Rev. B, Vol. 22, 3527-3539, 1980.
    doi:10.1103/PhysRevB.22.3527

    31. Mayergoyz, I. D., D. R. Fredkin, and Z. Zhang, "Electrostatic (plasmon) resonances in nanoparticles," Phys. Rev. B, Vol. 72, 155412, 2005.
    doi:10.1103/PhysRevB.72.155412

    32. Brongersma, M. L., J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B, Vol. 62, R16356-R16359, 2000.
    doi:10.1103/PhysRevB.62.R16356

    33. Maier, S. M., P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B, Vol. 67, 205402, 2003.
    doi:10.1103/PhysRevB.67.205402

    34. Davis, T. J., K. C. Vernon, and D. E. Gomez, "Effect of retardation on localized surface plasmon resonances in a metallic nanorod," Opt. Express, Vol. 17, 23655-23663, 2009.
    doi:10.1364/OE.17.023655

    35. Wang, Z. B., B. S. Luk'yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, "Energy flow around a small particle investigated by classical Mie theory ," Phys. Rev. B, Vol. 70, 035418, 2004.
    doi:10.1103/PhysRevB.70.035418

    36. Bashevoy, M. V., V. A. Fedotov, and N. I. Zheludev, "Optical whirlpool on an absorbing metallic nanoparticle," Opt. Express, Vol. 13, 8372-8379, 2005.
    doi:10.1364/OPEX.13.008372

    37. Tribelsky, M. I. and B. S. Luk'ynchuk, "Anomalous light scattering by small particles," Phys. Rev. Lett., Vol. 97, 263902, 2006.
    doi:10.1103/PhysRevLett.97.263902

    38. Walker, L. R., "Magnetostatic modes in ferromagnetic resonance," Phys. Rev., Vol. 105, 390-399, 1957.
    doi:10.1103/PhysRev.105.390

    39. Dillon, Jr., J. F., "Magnetostatic modes in disks and rods," J. Appl. Phys., Vol. 31, 1605-1614, 1960.
    doi:10.1063/1.1735901

    40. Yukawa, T. and K. Abe, "FMR spectrum of magnetostatic waves in a normally magnetized YIG disk," J. Appl. Phys., Vol. 45, 3146-3153, 1974.
    doi:10.1063/1.1663739

    41. Kamenetskii, E. O., A. K. Saha, and I. Awai, "Interaction of magnetic-dipolar modes with microwave-cavity electromagnetic fields," Phys. Lett. A, Vol. 332, 303-309, 2004.
    doi:10.1016/j.physleta.2004.09.067

    42. Sigalov, M., E. O. Kamenetskii, and R. Shavit, "Eigen electric moments and magnetic-dipolar vortices in quasi-2D ferrite disks," Appl. Phys. B, Vol. 93, 339-343, 2008.
    doi:10.1007/s00340-008-3168-2

    43. Sigalov, M., E. O. Kamenetskii, and R. Shavit, "Electric self-inductance of quasi-two-dimensional magnetic-dipolar-mode ferrite disks," J. Appl. Phys., Vol. 104, 053901, 2008.
    doi:10.1063/1.2973676

    44. Kamenetskii, E. O., R. Shavit, and M. Sigalov, "Quantum wells based on magnetic-dipolar-mode oscillations in disk ferromagnetic particles," Europhys. Lett., Vol. 64, 730-736, 2003.
    doi:10.1209/epl/i2003-00620-2

    45. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley , New York, 2004.

    46. Sigalov, M. and Magnetic-dipolar, "Magnetic-dipolar and electromagnetic vortices in quasi-2D ferrite disks," J. Phys.: Condens. Matter, Vol. 21, 016003, 2009.
    doi:10.1088/0953-8984/21/1/016003

    47. Kamenetskii, E. O., M. Sigalov, and R. Shavit, "Tellegen particles and magnetoelectric metamaterials," J. Appl. Phys., Vol. 105, 013537, 2009.
    doi:10.1063/1.3054298

    48. Anlage, S. M., D. E. Steinhauer, B. J. Feenstra, C. P. Vlahacos, and F. C.Wellstood, "Near-field microwave microscopy of material properties," arXiv: cond-mat/0001075, 2000.

    49. Rosner, B. T. and D. W. van der Weide, "High-frequency near-field microscopy," Rev. Sci. Instrum., Vol. 73, 2505-2525, 2002.
    doi:10.1063/1.1482150

    50. Joffe, R., E. O. Kamenetskii, and R. Shavit, "Novel microwave near-field sensors for material characterization, biology and nanotechnology," J. Appl. Phys., Vol. 113, 063912, 2013.
    doi:10.1063/1.4791713

    51. Carney, P. S., B. Deutch, A. A. Govyadinov, and R. Hillenbrand, "Phase in nanooptics," ACS NANO, Vol. 6, 8-12, 2012.
    doi:10.1021/nn205008y

    52. Wu, C., A. B. Khanikaev, R. Adato, N. Arju, A. Ali Yanik, H. Altug, and G. Shvets, "Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers," Nature Mater., Vol. 11, 69-75, 2012.

    53. Andrews, D. L., Structured Light and Its Applications: An Introduction to Phase-structured Beams and Nanoscale Optical Forces, 2008.

    54. Johnson, C., C. M. Marcus, M. P. Hanson, and A. C. Gossard, "Coulomb-modified Fano resonance in a one-lead quantum dot," Phys. Rev. Lett., Vol. 93, 106803, 2004.
    doi:10.1103/PhysRevLett.93.106803