Vol. 56

Latest Volume
All Volumes
All Issues

Magnetic-Dipolar-Mode Oscillations for Near- and Far-Field Manipulation of Microwave Radiation (Invited Paper)

By Eugene O. Kamenetskii, Roman Joffe, Maksim Berezin, Guy Vaisman, and Reuven Shavit
Progress In Electromagnetics Research B, Vol. 56, 51-88, 2013


There has been a surge of interest in the subwavelength confinement effects of the electromagnetic fields. Based on these effects, one can obtain new behaviors of the near- and farfield radiation. It is well known that in optics, the subwavelength confinement can be obtained due to surface-plasmon (or electrostatic) oscillations in metal structures. This paper is a review of recent studies on the subwavelength confinement in microwaves due to magnetic-dipolarmode (MDM) [or magnetostatic (MS)] oscillations in small ferrite samples. MDM oscillations in a mesoscopic ferrite-disk particle are quantized oscillations, which are characterized by energy eigenstates. The field structures are distinguished by power-flow vortices and non-zero helicity. Also in vacuum, the near fields originated from MDM particles are designated by topologically distinctive power-flow vortices, non-zero helicity, and a torsion degree of freedom. To differentiate such field structures from regular electromagnetic (EM) field structures, we term them as magnetoelectric (ME) fields. In a pattern of the microwave field scattered by a MDM ferrite disk and MDM-disk arrays, one can observe rotating topological-phase dislocations. This opens a perspective for creation of engineered electromagnetic fields with unique symmetry properties. In the near-field applications, we propose novel microwave sensors for material characterization, biology, and nanotechnology. Strong energy concentration and unique topological structures of the near fields originated from the MDM resonators allow effective measuring chiral properties of materials in microwaves. Generating far-field orbital angular momenta from near-field microwave chirality of MDM structures can be a subject of a great interest. Realization of such vortex generators opens perspective for novel microwave systems with topological-phase modulation.


Eugene O. Kamenetskii, Roman Joffe, Maksim Berezin, Guy Vaisman, and Reuven Shavit, "Magnetic-Dipolar-Mode Oscillations for Near- and Far-Field Manipulation of Microwave Radiation (Invited Paper)," Progress In Electromagnetics Research B, Vol. 56, 51-88, 2013.


    1. Jackson, J. D., "Classical Electrodynamics," Wiley, 1975.

    2. Landau, L. D. and E. M. Lifshitz, "Electrodynamics of Continuous Media,", 1984.

    3. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.

    4. Lee, B., I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, "Review on subwavelength confinement of light with plasmonics," J. Mod. Opt., Vol. 57, No. 16, 1479-1497, 2010.

    5. Ahn, W., S. V. Boriskina, Y. Hong, and B. M. Reinhard, "Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices," Nano Lett., Vol. 12, 219-227, 2012.

    6. Ruting, F., A. I. Fernandez-Domnguez, L. Martin-Moreno, and F. J. Garcia-Vidal, "Subwavelength chiral surface plasmons that carry tuneable orbital angular momentum," Phys. Rev. B, Vol. 86, 075437, 2012.

    7. Tang, Y. and A. E. Cohen, "Optical chirality and its interaction with matter," Phys. Rev. Lett., Vol. 104, 163901, 2010.

    8. Hendry, E., T. Carpy, J. Johnston, M. PoplandR. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, "Ultrasensitive detection and characterization of biomolecules using superchiral fields," Nat. Nanotechnol., Vol. 5, 783-787, 2010.

    9. Hentschel, M., M. Schaferling, T. Weiss, N. Liu, and H. Giessen, "Three-dimensional chiral plasmonic oligomers," Nano Lett., Vol. 12, 2542-2547, 2012.

    10. Gorodetski, Y., A. Drezet, C. Genet, and T. W. Ebbesen, "Generating far-field orbital angular momenta from near-field optical chirality," Phys. Rev. Lett., Vol. 110, 203906, 2013.

    11. Miroshnichenko, A. E., S. Plach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, 2257-2298, 2010.

    12. Luk'yanchuk, B., N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nature Mater., Vol. 9, 707-715, 2010.

    13. Gurevich, A. and G. Melkov, Magnetic Oscillations and Waves, CRC Press, New York, 1996.

    14. Kamenetskii, E. O., "Energy eigenstates of magnetostatic waves and oscillations," Phys. Rev. E, Vol. 63, 066612, 2001.

    15. Kamenetskii, E. O., M. Sigalov, and R. Shavit, "Quantum confinement of magnetic-dipolar oscillations in ferrite discs," J. Phys.: Condens. Matter, Vol. 17, 2211-2231, 2005.

    16. Kamenetskii, E. O., "Vortices and chirality of magnetostatic modes in quasi-2D ferrite disc particles," J. Phys. A: Math. Theor., Vol. 40, 6539-6559, 2007.

    17. Kamenetskii, E. O., "Helical-mode magnetostatic resonances in small ferrite particles and singular metamaterials," J. Phys.: Condens. Matter, Vol. 22, 486005, 2010.

    18. Kamenetskii, E. O., M. Sigalov, and R. Shavit, "Manipulating microwaves with magnetic-dipolar-mode vortices," Phys. Rev. A, Vol. 81, 053823, 2010.

    19. Kamenetskii, E. O., R. Joffe, and R. Shavit, "Coupled states of electromagnetic fields with magnetic-dipolar-mode vortices: MDM-vortex polaritons," Phys. Rev. A, Vol. 84, 023836, 2011.

    20. Kamentskii, E. O., "Microwave magnetoelectric fields," arXiv:1111.4359, 2011.

    21. Kamenetskii, E. O., R. Joffe, and R. Shavit, "Microwave magnetoelectric fields and their role in the matter-field interaction," Phys. Rev. E, Vol. 87, 023201, 2013.

    22. Berezin, M., E. O. Kamenetskii, and R. Shavit, "Topological phase effects and path-dependent interference in microwave structures with magnetic-dipolar-mode ferrite particles," J. Opt., Vol. 14, 125602, 2012.

    23. Kamenetskii, E. O., G. Vaisman, and R. Shavit, "Fano resonances of microwave structures with embedded magneto-dipolar quantum dots," arXiv:1309.2792, 2013.

    24. McDonald, K. T., "An electrostatic wave," arXiv:physics/0312025, 2003.

    25. McDonald, K. T., "Magnetostatic spin waves," arXiv:physics/0312026, 2003.

    26. Sondergaard, T. and S. Bozhevolnyi, "Slow-plasmon resonant nanostructures: Scattering and field enhancements," Phys. Rev. B, Vol. 75, 073402, 2007.

    27. Pelton, M., J. Aizpurua, and G. Bryant, "Metal-nanoparticle plasmonics," Laser & Photon. Rev., Vol. 2, 136-159, 2008.

    28. Stockman, M. I., S. V. Faleev, and D. J. Bergman, "Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?," Phys. Rev. Lett., Vol. 87, 167401, 2001.

    29. Li, K., M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an e±cient nanolens," Phys. Rev. Lett., Vol. 91, 227402, 2003.

    30. Bergman, D. J. and D. Stroud, "Theory of resonances in the electromagnetic scattering by macroscopic bodies," Phys. Rev. B, Vol. 22, 3527-3539, 1980.

    31. Mayergoyz, I. D., D. R. Fredkin, and Z. Zhang, "Electrostatic (plasmon) resonances in nanoparticles," Phys. Rev. B, Vol. 72, 155412, 2005.

    32. Brongersma, M. L., J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B, Vol. 62, R16356-R16359, 2000.

    33. Maier, S. M., P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B, Vol. 67, 205402, 2003.

    34. Davis, T. J., K. C. Vernon, and D. E. Gomez, "Effect of retardation on localized surface plasmon resonances in a metallic nanorod," Opt. Express, Vol. 17, 23655-23663, 2009.

    35. Wang, Z. B., B. S. Luk'yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, "Energy flow around a small particle investigated by classical Mie theory ," Phys. Rev. B, Vol. 70, 035418, 2004.

    36. Bashevoy, M. V., V. A. Fedotov, and N. I. Zheludev, "Optical whirlpool on an absorbing metallic nanoparticle," Opt. Express, Vol. 13, 8372-8379, 2005.

    37. Tribelsky, M. I. and B. S. Luk'ynchuk, "Anomalous light scattering by small particles," Phys. Rev. Lett., Vol. 97, 263902, 2006.

    38. Walker, L. R., "Magnetostatic modes in ferromagnetic resonance," Phys. Rev., Vol. 105, 390-399, 1957.

    39. Dillon, Jr., J. F., "Magnetostatic modes in disks and rods," J. Appl. Phys., Vol. 31, 1605-1614, 1960.

    40. Yukawa, T. and K. Abe, "FMR spectrum of magnetostatic waves in a normally magnetized YIG disk," J. Appl. Phys., Vol. 45, 3146-3153, 1974.

    41. Kamenetskii, E. O., A. K. Saha, and I. Awai, "Interaction of magnetic-dipolar modes with microwave-cavity electromagnetic fields," Phys. Lett. A, Vol. 332, 303-309, 2004.

    42. Sigalov, M., E. O. Kamenetskii, and R. Shavit, "Eigen electric moments and magnetic-dipolar vortices in quasi-2D ferrite disks," Appl. Phys. B, Vol. 93, 339-343, 2008.

    43. Sigalov, M., E. O. Kamenetskii, and R. Shavit, "Electric self-inductance of quasi-two-dimensional magnetic-dipolar-mode ferrite disks," J. Appl. Phys., Vol. 104, 053901, 2008.

    44. Kamenetskii, E. O., R. Shavit, and M. Sigalov, "Quantum wells based on magnetic-dipolar-mode oscillations in disk ferromagnetic particles," Europhys. Lett., Vol. 64, 730-736, 2003.

    45. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley , New York, 2004.

    46. Sigalov, M. and Magnetic-dipolar, "Magnetic-dipolar and electromagnetic vortices in quasi-2D ferrite disks," J. Phys.: Condens. Matter, Vol. 21, 016003, 2009.

    47. Kamenetskii, E. O., M. Sigalov, and R. Shavit, "Tellegen particles and magnetoelectric metamaterials," J. Appl. Phys., Vol. 105, 013537, 2009.

    48. Anlage, S. M., D. E. Steinhauer, B. J. Feenstra, C. P. Vlahacos, and F. C.Wellstood, "Near-field microwave microscopy of material properties," arXiv: cond-mat/0001075, 2000.

    49. Rosner, B. T. and D. W. van der Weide, "High-frequency near-field microscopy," Rev. Sci. Instrum., Vol. 73, 2505-2525, 2002.

    50. Joffe, R., E. O. Kamenetskii, and R. Shavit, "Novel microwave near-field sensors for material characterization, biology and nanotechnology," J. Appl. Phys., Vol. 113, 063912, 2013.

    51. Carney, P. S., B. Deutch, A. A. Govyadinov, and R. Hillenbrand, "Phase in nanooptics," ACS NANO, Vol. 6, 8-12, 2012.

    52. Wu, C., A. B. Khanikaev, R. Adato, N. Arju, A. Ali Yanik, H. Altug, and G. Shvets, "Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers," Nature Mater., Vol. 11, 69-75, 2012.

    53. Andrews, D. L., Structured Light and Its Applications: An Introduction to Phase-structured Beams and Nanoscale Optical Forces, 2008.

    54. Johnson, C., C. M. Marcus, M. P. Hanson, and A. C. Gossard, "Coulomb-modified Fano resonance in a one-lead quantum dot," Phys. Rev. Lett., Vol. 93, 106803, 2004.