Vol. 61

Latest Volume
All Volumes
All Issues

Finite-Difference Frequency-Domain Algorithm for Modeling Electromagnetic Scattering from General Anisotropic Objects

By Raymond C. Rumpf, Cesar R. Garcia, Eric A. Berry, and Jay H. Barton
Progress In Electromagnetics Research B, Vol. 61, 55-67, 2014


The finite-difference frequency-domain (FDFD) method is a very simple and powerful approach for rigorous analysis of electromagnetic structures. It may be the simplest of all methods to implement and is excellent for field visualization and for developing new ways to model devices. This paper describes a simple method for incorporating anisotropic materials with arbitrary tensors for both permittivity and permeability into the FDFD method. The algorithm is benchmarked by comparing transmission and reflection results for an anisotropic guided-mode resonant filter simulated in HFSS and FDFD. The anisotropic FDFD method is then applied to a lens and cloak designed by transformation optics.


Raymond C. Rumpf, Cesar R. Garcia, Eric A. Berry, and Jay H. Barton, "Finite-Difference Frequency-Domain Algorithm for Modeling Electromagnetic Scattering from General Anisotropic Objects," Progress In Electromagnetics Research B, Vol. 61, 55-67, 2014.


    1. Luo, G. Q., et al., "Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology," IEEE Transactions on Antennas and Propagation, Vol. 53, 4035-4043, 2005.

    2. Rumpf, R. C., "Design and optimization of nano-optical elements by coupling fabrication to optical behavior,", University of Central Florida Orlando, Florida, 2006.

    3. Sun, W., K. Liu, and C. A. Balanis, "Analysis of singly and doubly periodic absorbers by frequency-domain finite-difference method," IEEE Transactions on Antennas and Propagation, Vol. 44, 798-805, 1996.

    4. Wu, S.-D. and E. N. Glytsis, "Volume holographic grating couplers: Rigorous analysis by use of the finite-difference frequency-domain method," Applied Optics, Vol. 43, 1009-1023, 2004.

    5. Shin, W. and S. Fan, "Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell's equations solvers," Journal of Computational Physics, Vol. 231, 3406-3431, 2012.

    6. Shin, W. and S. Fan, "Accelerated solution of the frequency-domain Maxwell's equations by engineering the eigenvalue distribution of the operator," Optics Express, Vol. 21, 22578-22595, 2013.

    7. Rumpf, R. C., "Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain," Progress In Electromagnetics Research B, Vol. 36, 221-248, 2012.

    8. Takayama, O., L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, "Dyakonov surface waves: A review," Electromagnetics, Vol. 28, 126-145, 2008.

    9. Figotin, A. and I. Vitebskiy, "Slow-wave resonance in periodic stacks of anisotropic layers," Physical Review A, Vol. 76, 053839, 2007.

    10. Schurig, D., et al., "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.

    11. Kwon, D.-H. and D. H. Werner, "Polarization splitter and polarization rotator designs based on transformation optics," Optics Express, Vol. 16, 18731-18738, 2008.

    12. Al-Barqawi, H., N. Dib, and M. Khodier, "A two-dimensional full-wave finite-difference frequency-domain analysis of ferrite loaded structures," International Journal of Infrared and Millimeter Waves, Vol. 29, 443-456, 2008.

    13. Loke, V. L., T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "FDFD/T-matrix hybrid method," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 106, 274-284, 2007.

    14. Mielewski, J., A. Cwikla, and M. Mrozowski, "Analysis of shielded anisotropic dielectric resonators using FDFD and the Arnoldi method," 12th International Conference on Microwaves and Radar MIKON'98, 335-339, 1998.

    15. Pinheiro, H. F., A. J. Giarola, and C. L. D. S. S. Sobrinho, "Dispersion characteristics of asymmetric coupled anisotropic dielectric waveguides using FDFD," International Journal of Infrared and Millimeter Waves, Vol. 16, 1965-1975, 1995.

    16. Rappaport, C. M. and B. J. McCartin, "FDFD analysis of electromagnetic scattering in anisotropic media using unconstrained triangular meshes," IEEE Transactions on Antennas and Propagation, Vol. 39, 345-349, 1991.

    17. Rappaport, C. M. and E. Smith, "Anisotropic FDFD computed on conformal meshes," IEEE Transactions on Magnetics, Vol. 27, 3848-3851, 1991.

    18. Zhao, Y.-J., K.-L. Wu, and K.-K. Cheng, "A compact 2-D full-wave finite-difference frequency-domain method for general guided wave structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 1844-1848, 2002.

    19. Chen, M.-Y., S.-M. Hsu, and H.-C. Chang, "A finite-difference frequency-domain method for full-vectroial mode solutions of anisotropic optical waveguides with arbitrary permittivity tensor," Optics Express, Vol. 17, 5965-5979, 2009.

    20. Lavranos, C., G. Kyriacou, and J. Sahalos, "A 2-D finite difference frequency domain (FDFD) eigenvalue method for orthogonal curvilinear coordinates," PIERS Proceedings, 397-400, PISA, Italy, Mar. 28-31, 2004.

    21. Pereda, J. A., A. Vegas, and A. Prieto, "An improved compact 2D full-wave FDFD method for general guided wave structures," Microwave and Optical Technology Letters, Vol. 38, 331-335, 2003.

    22. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDFD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.

    23. Taflove, A. and S. C. Hagness, Computational Electrodynamics, Vol. 160, Artech House Boston, 2000.

    24. Umashankar, K. and A. Taflove, "A novel method to analyze electromagnetic scattering of complex objects," IEEE Transactions on Electromagnetic Compatibility, 397-405, 1982.

    25. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, 185-200, 1994.

    26. Margengo, E., C. M. Rappaport, and E. L. Miller, "Optimum PML ABC conductivity profile in FDFD," IEEE Transactions on Magnetics, Vol. 35, 1506-1509, 1999.

    27. Sacks, Z. S., D. M. Kingsland, R. Lee, and J.-F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 43, 1460-1463, 1995.

    28. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.

    29. Jordán, K., Calculus of Finite Differences, American Mathematical Soc., 1965.

    30. Rumpf, R. C., C. R. Garcia, H. H. Tsang, J. E. Padilla, and M. D. Irwin, "Electromagnetic isolation of a microstrip by embedding in a spatially variant anisotropic metamaterial," Progress In Electromagnetics Research, Vol. 142, 243-260, 2013.

    31. Horn, A., "Doubly stochastic matrices and the diagonal of a rotation matrix," Amer. J. Math, Vol. 76, 620-630, 1954.

    32. Magnusson, R. and S. Wang, "New principle for optical filters," Applied Physics Letters, Vol. 61, 1022-1024, 1992.

    33. Barton, J. H., R. C. Rumpf, R. W. Smith, C. L. Kozikowski, and P. A. Zellner, "All-dielectric frequency selective surfaces with few number of periods," Progress In Electromagnetics Research B, Vol. 41, 269-283, 2012.

    34. Boonruang, S., A. Greenwell, and M. Moharam, "Multiline two-dimensional guided-mode resonant filters," Applied Optics, Vol. 45, 5740-5747, 2006.

    35. Pung, A. J., S. R. Carl, I. R. Srimathi, and E. G. Johnson, "Method of fabrication for encapsulated polarizing resonant gratings," IEEE Photonics Technology Letters, Vol. 25, 1432-1434, 2013.

    36. Tibuleac, S. and R. Magnusson, "Re°ection and transmission guided-mode resonance filters," JOSA A, Vol. 14, 1617-1626, 1997.

    37. Garcia, C. R., J. Correa, D. Espalin, J. H. Barton, R. C. Rumpf, R. Wicker, and V. Gonzalez, "3D printing of anisotropic metamaterials," Progress In Electromagnetics Research Letters, Vol. 34, 75-82, 2012.

    38. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.

    39. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.

    40. Ward, A. and J. Pendry, "Refraction and geometry in Maxwell's equations," Journal of Modern Optics, Vol. 43, 773-793, 1996.

    41. Landau, L. D. and E. M. Lifshits, The Classical Theory of Fields, Vol. 2, Butterworth-Heinemann, 1975.

    42. Post, E. J., Formal Structure of Electromagnetics: General Covariance and Electromagnetics, Courier Dover Publications, 1997.

    43. Kwon, D.-H. and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends ," New Journal of Physics, Vol. 10, 115023, 2008.

    44. Cai, W., U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, 224-227, 2007.