In this paper, the left-handed metamaterial which acts as a lens is employed to improve the performance of a microstrip patch antenna. The left-handed metamaterial used in this work is a three-dimensional periodic structure which consists of circular split ring resonators and thin wires. The metamaterials three dimensional periodic structure shows angular independency characteristics in wide range angles, so it acts as a metamaterial lens. However, the MTM structure infinite periodicity truncation has no impacts on the MTM lens scattering, effective parameters and homogeneity. The left-handed metamaterial is placed in front of the microstrip patch antenna and due to the negative refractive index property of the left-handed metamaterial; the radiated electromagnetic beam size decreases which results in a highly focused beam. The proposed antenna has been designed and simulated using CST microwave studio, and the metamaterial effective parameters are extracted from the S parameters by using Nicolson-Ross-Weir algorithm and by selecting the appropriate ambiguity branch parameter. Furthermore, the angular independency of the metamaterial lens has been verified by rotating the metamaterial structure with respect to the excitation probe of the transverse electromagnetic waves and extracting the S-parameters and the effective parameters for each rotation angle. A parametric analysis has been performed to study the effects of the patch antenna and left-handed metamaterial lens separation and the size of the three dimensional left-handed metamaterial structure on the radiating properties and the impedance matching of the proposed antenna. For the experimental verification, the proposed antenna operating at 10 GHz is fabricated; the return loss, radiation pattern and gain for the proposed antenna with and without metamaterial are measured. Furthermore, the results show that the antenna gain is improved by 4.6 dB which validates the concept of beam focusing using negative refractive index metamaterial structure, while the return loss and bandwidth are slightly reduced. The simulation and experiment investigated the idea of the beam focusing using negative refractive index metamaterial lens in microwave regime.
2. Gauthier, G., A. Courtay, and G. Rebeiz, "Microstrip antennas on synthesized low dielectric-constant substrates," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 8, 1310-1314, 1997.
doi:10.1109/8.611252
3. Colburn, J. and Y. Rahmat-Samii, "Patch antennas on externally perforated high dielectric constant substrates," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 12, 1785-1794, 1999.
doi:10.1109/8.817654
4. Kokotoff, D., R. Waterhouse, C. Birtcher, and J. Aberle, "Annular ring coupled circular patch with enhanced performance," Electron. Lett., Vol. 33, No. 24, 2000, 1997.
doi:10.1049/el:19971411
5. Rojas, R. and K. Lee, "Surface wave control using nonperiodic parasitic strips in printed antennas," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 148, No. 1, 25, 2001.
doi:10.1049/ip-map:20010222
6. Bhattacharyya, A., "Characteristics of space and surface waves in a multilayered structure (microstrip antennas)," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 8, 1231-1240, 1990.
doi:10.1109/8.56959
7. Jackson, D., J. Williams, A. Bhattacharyya, R. Smith, S. Buchheit, and S. Long, "Microstrip patch designs that do not excite surface waves," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 8, 1026-1037, 1993.
doi:10.1109/8.244643
8. Khayat, M., J. Williams, D. Jackson, and S. Long, "Mutual coupling between reduced surface-wave microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 10, 1581-1593, 2000.
doi:10.1109/8.899675
9. Pendry, J., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 4166-4169, 2000.
doi:10.1103/PhysRevLett.85.3966
10. Weng, Z., N. Wang, Y. Jiao, and F. Zhang, "A directive patch antenna with metamaterial structure," Microwave and Optical Technology Letters, Vol. 49, No. 2, 456-459, 2006.
doi:10.1002/mop.22146
11. Liu, Y. and X. Zhao, "Enhanced patch antenna performances using dendritic structure metamaterials," Microwave and Optical Technology Letters, Vol. 51, No. 7, 1732-1740, 2009.
doi:10.1002/mop.24450
12. Smith, D., W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184
13. Smith, D. and N. Kroll, "Negative refractive index in left-handed materials," Phys. Rev. Lett., Vol. 85, No. 14, 2933-2936, 2000.
doi:10.1103/PhysRevLett.85.2933
14. Shelby, R., "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847
15. Grbic, A. and G. Eleftheriades, "Periodic analysis of a 2-D negative refractive index transmission line structure," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2604-2611, 2003.
doi:10.1109/TAP.2003.817543
16. Chen, L., S. He, and L. Shen, "Finite-size effects of a left-handed material slab on the image quality," Phys. Rev. Lett., Vol. 92, No. 10, 2004.
17. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699
18. Majid, H. A., M. K. Abd Rahim, and T. Masri, "Microstrip antenna's gain enhancement using left-handed metamaterial structure," Progress In Electromagnetics Research M, Vol. 8, 235-247, 2009.
doi:10.2528/PIERM09071301
19. Alici, K., F. Bilotti, L. Vegni, and E. Ozbay, "Optimization and tunability of deep subwavelength resonators for metamaterial applications: Complete enhanced transmission through a subwavelength aperture," Opt. Express, Vol. 17, No. 8, 5933, 2009.
doi:10.1364/OE.17.005933
20. Alici, K. and E. Ozbay, "Characterization and tilted response of a fishnet metamaterial operating at 100 GHz," Journal of Physics D: Applied Physics, Vol. 41, No. 13, 135011, 2008.
doi:10.1088/0022-3727/41/13/135011
21. Gil, M., J. Bonache, J. Selga, J. Garcia-Garcia, and F. Martin, "High-pass filters implemented by composite right/left handed (CRLH) transmission lines based on complementary split rings resonators (CSRRs)," PIERS Online, Vol. 3, No. 3, 251-253, 2007.
doi:10.2529/PIERS060802072849
22. Buell, K., H. Mosallaei, and K. Sarabandi, "A substrate for small patch antennas providing tunable miniaturization factors," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 135-146, 2006.
doi:10.1109/TMTT.2005.860329
23. Alici, K. and E. Ozbay, "Electrically small split ring resonator antennas," J. Appl. Phys., Vol. 101, No. 8, 083104, 2007.
doi:10.1063/1.2722232
24. Alu, A., F. Bilotti, N. Engheta, and L. Vegni, "Subwavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 1, 13-25, 2007.
doi:10.1109/TAP.2006.888401
25. Pirhadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directive EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201
26. Lee, Y., J. Yeo, K. Ko, R. Mittra, Y. Lee, and W. Park, "A novel design technique for control of defect frequencies of an electromagnetic bandgap (EBG) superstrate for dual-band directivity enhancement," Microwave and Optical Technology Letters, Vol. 42, No. 1, 25-31, 2004.
doi:10.1002/mop.20196
27. Erentok, A., P. Luljak, and R. Ziolkowski, "Characterization of a volumetric metamaterial realization of an artificial magnetic conductor for antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 160-172, 2005.
doi:10.1109/TAP.2004.840534
28. Burokur, S., M. Latrach, and S. Toutain, "Theoretical investigation of a circular patch antenna in the presence of a left-handed medium," Antennas and Wireless Propagation Letters, Vol. 4, No. 1, 183-186, 2005.
doi:10.1109/LAWP.2005.850797
29. Li, B., B. Wu, and C. H. Liang, "Study on high gain circular waveguide array antenna with metamaterial structure," Progress In Electromagnetics Research, Vol. 60, 207-219, 2006.
doi:10.2528/PIER05121101
30. Burghignoli, P., G. Lovat, F. Capolino, D. R. Jackson, and D. R. Wilton, "Directive leaky-wave radiation from a dipole source in a wire-medium slab," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 5, 1329-1339, 2008.
doi:10.1109/TAP.2008.922620
31. El-Nawawy, M., A. A. Allam, and A. Korzec, "The design of a 0.35 THz microstrip patch antenna on LTCC substrate," Electrical and Electronic Engineering, Vol. 1, No. 1, 1-4, 2011.
doi:10.5923/j.eee.20110101.01
32. Turpin, J., J. Bossard, K. Morgan, D. Werner, and P. Werner, "Reconfigurable and tunable metamaterials: A review of the theory and applications," International Journal of Antennas and Propagation, Vol. 2014, 1-18, 2014.
doi:10.1155/2014/429837
33. Vendik, I., O. Vendik, M. Odit, D. Kholodnyak, S. Zubko, M. Sitnikova, P. Turalchuk, K. Zemlyakov, I. Munina, D. Kozlov, V. Turgaliev, A. Ustinov, Y. Park, J. Kihm, and C.-W. Lee, "Tunable metamaterials for controlling THz radiation," IEEE Transactions on Terahertz Science and Technology, Vol. 2, No. 5, 540-549, 2012.
doi:10.1109/TTHZ.2012.2209878
34. Ziolkowski, R. W., "Metamaterial-based antennas: Research and developments," IEICE Transactions on Electronics, Vol. 89, No. 8, 1267-1275, 2006.
doi:10.1093/ietele/e89-c.9.1267
35. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, 213902, 2002.
doi:10.1103/PhysRevLett.89.213902
36. Xu, H., Z. Zhao, Y. Lv, C. Du, and X. Luo, "Metamaterial superstrate and electromagnetic band-gap substrate for high directive antenna," Int. J. Infrared Milli. Waves, Vol. 29, 493-498, 2008.
doi:10.1007/s10762-008-9344-y
37. Ju, J., D. kim, W. J. Lee, and J. I. Choi, "Wideband high-gain antenna using metamaterial superstrate with the zero refractive index," Microwave and Optical Tech. Lett., Vol. 51, No. 8, 1973-1976, 2009.
doi:10.1002/mop.24469
38. Temelkuaran, B., M. Bayindir, E. Ozbay, R. Biswas, M. Sigalas, G. Tuttle, and K. M. Ho, "Photonic crystal-based resonant antenna with a very high directivity," Journal of Applied Physics, Vol. 87, 603-605, 2000.
doi:10.1063/1.371905
39. Alu, A., F. Bilotti, N. Engheta, and L. Vegni, "Metamaterial covers over a small aperture," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 6, 1632-1643, Jun. 2006.
doi:10.1109/TAP.2006.875470
40. Tang, M., S. Xiao, D.Wang, J. Xiong, K. Chen, and B. Wang, "Negative index of reflection in planar metamaterial composed of single split-ring resonators," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 26, No. 3, 250-258, Mar. 2011.
41. Woodley, J., M. Wheeler, and M. Mojahedi, "Left-handed and right-handed metamaterials composed of split ring resonators and strip wires," Physical Review E, Vol. 71, No. 6, 2005.
doi:10.1103/PhysRevE.71.066605
42. Kamtongdee, C. and N. Wongkasem, "A novel design of compact 2.4 GHz microstrip antennas," IEEE 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2009, ECTI-CON 2009, Vol. 2, 766-769, May 2009.
doi:10.1109/ECTICON.2009.5137159
43. Bancroft, R., Microstrip and printed antenna design, The Institution of Engineering and Technology, 2009.
44. Pues, H. and A. V Capelle, "Accurate transmission-line model for the rectangular microstrip antenna," Proc. IEEE, Vol. 131, No. 6, 334-340, Dec. 1984.
45. Chen, X., T. Grzegorczyk, B. Wu, J. Pacheco, and J. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, No. 1, 2004.
46. Arslanagic, S., T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, "A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization," IEEE Antennas and Propagation Magazine, Vol. 55, No. 2, 91-106, 2013.
doi:10.1109/MAP.2013.6529320
47. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time- domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932
48. Boughriet, A. H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 1, 52-57, 1997.
doi:10.1109/22.552032
49. Campione, S., S. Steshenko, M. Albani, and F. Capolino, "Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres," Optics Express, Vol. 19, No. 27, 26027-26043, 2011.
doi:10.1364/OE.19.026027
50. Hu, J., C. S. Yan, and Q. C. Lin, "A new patch antenna with metamaterial cover," Journal of Zhejiang University SCIENCE A, Vol. 7, No. 1, 89-94, 2006.
doi:10.1631/jzus.2006.A0089
51. Kurzweil-Segev, Y., M. Brodsky, A. Polsman, E. Safrai, Y. Feldman, S. Einav, and P. Ben Ishai, "Remote monitoring of phasic heart rate changes from the palm," IEEE Transactions on Terahertz Science and Technology, Vol. 4, No. 5, 618-623, 2014.
doi:10.1109/TTHZ.2014.2330196
52. Sun, M., Z. N. Chen, H. Tanoto, Q. Y. Wu, J. H. Teng, and S. B. Yeap, "Design of continuous- wave photomixer driven terahertz dipole lens antennas," APSIPA Annual Summit and Conference, 14-17, Dec. 2010.