Vol. 71

Latest Volume
All Volumes
All Issues
2016-11-23

Compact Rotman Lens Structure Configurations to Support Millimeter Wave Devices

By Toan Khanh Vo Dai and Ozlem Kilic
Progress In Electromagnetics Research B, Vol. 71, 91-106, 2016
doi:10.2528/PIERB16082704

Abstract

The development of modern communication devices for the latest technologies such as 5G has brought the millimeter wave technology into the spotlight because it offers higher data rates and bandwidth. Since highly directional transmissions are necessary for communication in these frequencies due to high path loss and atmospheric absorption, the use of adaptive antennas is inevitable. Rotman lenses have long been used as analog beam forming networks to support linear array antennas for electronic scanning. Their broad bandwidth and planar structure make them ideal for a variety of applications. However, their overall dimensions can be prohibitive especially for large scan angles. In this paper, we propose a few compact configurations that reduce the overall dimensions of Rotman lens as much as 50% without degrading its performance.

Citation


Toan Khanh Vo Dai and Ozlem Kilic, "Compact Rotman Lens Structure Configurations to Support Millimeter Wave Devices," Progress In Electromagnetics Research B, Vol. 71, 91-106, 2016.
doi:10.2528/PIERB16082704
http://test.jpier.org/PIERB/pier.php?paper=16082704

References


    1. Rotman, W. and R. Turner, "Wide-angle microwave lens for line source applications," IEEE Transactions on Antennas and Propagation, Vol. 11, 623-632, 1963.
    doi:10.1109/TAP.1963.1138114

    2. Smith, M. S., "Design considerations for Ruze and Rotman lenses," Radio and Electronic Engineer, Vol. 52, No. 4, 181-187, 1982.
    doi:10.1049/ree.1982.0027

    3. Smith, M. S. and A. K. S. Fong, "Amplitude performance of Ruze and Rotman lenses," Radio and Electronic Engineer, Vol. 53, No. 9, 329-336, 1983.
    doi:10.1049/ree.1983.0061

    4. Hansen, R. C., "Design trades for Rotman lenses," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 4, 464-472, 1991.
    doi:10.1109/8.81458

    5. Katagi, T., S. Mano, S. Sato, S. Tahara, and E. Tomimatsu, "An improved design method of Rotman lens antennas," IEEE Antennas and Propagation Society International Symposium, Vol. 20, 136-139, 1982.

    6. Weiss, S. and O. Kilic, "Rotman lens design for aperiodic arrays," Pro. IEEE AP-S/URSI Intl. Conference, Toronto, Canada, July 2010.

    7. Weiss, S., A. Zaghloul, and O. Kilic, "Measurement and simulation of Rotman lens designs that mitigate internal diffraction effects," Proc. IEEE AP-S/URSI Intl Conference, Toronto, Canada, July 2010.

    8. Nguyen, T., T. K. Vo Dai, and O. Kilic, "Rotman lens-fed aperture coupled array antenna at millimeter wave," IEEE APS/URSI 2016, Fajardo, Puerto Rico, USA, July 2016.

    9. Rappaport, C. and A. Zaghloul, "Optimized three-dimensional lenses for wide-angle scanning," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 11, 1227-1236, 1985.
    doi:10.1109/TAP.1985.1143519

    10. Dong, J., A. I. Zaghloul, and R. Rotman, "Phase-error performance of multi-focal and non-focal two-dimensional Rotman lens designs," IET Microwaves, Antennas & Propagation, Vol. 4, No. 12, 2097-2103, 2010.
    doi:10.1049/iet-map.2009.0565

    11. Vo Dai, T. K. and O. Kilic, "A non-focal rotman lens design to support cylindrically conformal array antenna," The Applied Computational Electromagnetics Society Express Journal, Vol. 7, July 2016.

    12. Kilic, O. and R. Dahlstrom, "Rotman lens beam formers for Army multifunction RF antenna applications," 2005 IEEE Antennas and Propagation Society International Symposium, Vol. 2, 2005.

    13. Kilic, O. and S. Weiss, "Rotman lens designs for military applications," Radio Science Bulletin, No. 333, 10-24, 2010.

    14. Zaghloul, A., O. Kilic, S. Weiss, and E. Adler, "Realization of Rotman’s concepts of beamformer lenses and artificial dielectric materials," IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, COMCAS 2009, 2009.

    15. Weiss, S., S. Keller, and C. Ly, "Development of simple affordable beamformers for army platforms," Proceedings of GOMACTech --- 07 Conference, Lake Buena Vista, FL, 2006.

    16. Schulwitz, L. and A. Mortazawi, "A new low loss Rotman lens design using a graded dielectric substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, No. 12, 2734-2741, 2008.
    doi:10.1109/TMTT.2008.2006802

    17. Hirokawa, J. and M. Ando, "Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 5, 625-630, 1998.
    doi:10.1109/8.668903

    18. Cheng, Y. J., W. Hong, K. Wu, Z. Q. Kuai, C. Yu, J. X. Chen, J. Y. Zhou, and H. J. Tang, "Substrate integrated waveguide (SIW) Rotman lens and its Ka-band multibeam array antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2504-2513, 2008.
    doi:10.1109/TAP.2008.927567

    19. Peterson, A. F. and E. O. Rausch, "Scattering matrix integral equation analysis for the design of a waveguide Rotman lens," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 5, 870-878, 1999.
    doi:10.1109/8.774150

    20. Gandini, E., M. Ettorre, M. Casaletti, K. Tekkouk, L. Le Coq, and R. Sauleau, "SIW slotted waveguide array with pillbox transition for mechanical beam scanning," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1572-1575, 2012.
    doi:10.1109/LAWP.2012.2235057

    21. Casaletti, M., R. Sauleau, M. Ettorre, and S. Maci, "Efficient analysis of metallic and dielectric posts in parallel-plate waveguide structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 10, 2979-2989, 2012.
    doi:10.1109/TMTT.2012.2209449

    22. Casaletti, M., G. Valerio, J. Seljan, M. Ettorre, and R. Sauleau, "A full-wave hybrid method for the analysis of multilayered SIW-based antennas," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 11, 5575-5588, 2013.
    doi:10.1109/TAP.2013.2279795

    23. Ettorre, M., R. Sauleau, and L. Le Coq, "Multi-Beam multi-layer leaky-wave SIW pillbox antenna for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 4, 1093-1100, 2011.
    doi:10.1109/TAP.2011.2109695

    24. Tekkouk, K., et al., "Multibeam SIW slotted waveguide antenna system fed by a compact dual-layer rotman lens," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 2, 504-514, 2016.
    doi:10.1109/TAP.2015.2499752

    25. Tudosie, G. and R. Vahldieck, "An LTCC-based folded Rotman lens for phased array applications," 2006 Asia-Paci c Microwave Conference, 2006.

    26. Vo Dai, T. K. and O. Kilic, "Designing folded rotman lens," IEEE Internaltional Symposium on Antennas and Propagation/USNC-URSI National Radio Science Meeting, 2016.

    27. Josefsson, L. and P. Persson, Conformal Array Antenna Theory and Design, Vol. 29, John Wiley & Sons, 2006.
    doi:10.1002/047178012X

    28. Jha, R. M., S. A. Bokhari, V. Sudhakar, and P. R. Mahapatra, "Closed form expressions for integral ray geometric parameters for wave propagation on general quadric cylinders," Antennas and Propagation Society International Symposium, 1989, AP-S. Digest, 203-206, 1989.
    doi:10.1109/APS.1989.134650

    29. Rice, S. O., "Reflections from circular bends in rectangular wave guides — Matrix theory," Bell System Technical Journal, Vol. 27, No. 2, 305-349, 1948.
    doi:10.1002/j.1538-7305.1948.tb00911.x

    30. Barlow, H. E. M., "Propagation around bends in waveguides," Proceedings of the IEE-Part C: Monographs, Vol. 106, No. 9, 11-15, 1959.
    doi:10.1049/pi-c.1959.0004

    31. nScrypt, Inc., http://nscrypt.com/, October 2016.