Vol. 75

Latest Volume
All Volumes
All Issues
2017-04-15

A Review of Photonic Generation of Arbitrary Microwave Waveforms

By Lam Anh Bui
Progress In Electromagnetics Research B, Vol. 75, 1-12, 2017
doi:10.2528/PIERB17011201

Abstract

This paper presents a tutorial on photonic techniques for arbitrary RF waveform generation, highlights some key results and reviews the recent developments in this area. It also predicts that photonic integration of the entire system as compact photonic chip will be the major research focus and holds the key role for future developments.

Citation


Lam Anh Bui, "A Review of Photonic Generation of Arbitrary Microwave Waveforms," Progress In Electromagnetics Research B, Vol. 75, 1-12, 2017.
doi:10.2528/PIERB17011201
http://test.jpier.org/PIERB/pier.php?paper=17011201

References


    1. Bolea, M., J. Mora, B. Ortega, and J. Capmany, "Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats," Optics Express, Vol. 17, 5023-5032, 2009.
    doi:10.1364/OE.17.005023

    2. Chow, C., S. Huang, L. Yang, and C. Yeh, "Extended-reach access network with downstream radio-over-fiber (ROF) signal and upstream NRZ signal using orthogonal-WDM," Optics Express, Vol. 20, 16757-16762, 2012.
    doi:10.1364/OE.20.016757

    3. Pan, S. and J. Yao, "UWB-over-fiber communications: Modulation and transmission," Journal of Lightwave Technology, Vol. 28, 2445-2455, 2010.
    doi:10.1109/JLT.2010.2043713

    4. Goda, K., K. Tsia, and B. Jalali, "Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena," Nature, Vol. 458, 1145-1149, 2009.
    doi:10.1038/nature07980

    5. Hansen, H., "Standoff detection using millimeter and submillimeter wave spectroscopy," Proceedings of the IEEE, Vol. 95, 1691-1704, 2007.
    doi:10.1109/JPROC.2007.900331

    6. Miyakawa, M. and J. C. Bolomey, Non-invasive Thermometry of the Human Body, CRC Press, 1995.

    7. Nashashibi, A. Y., K. Sarabandi, P. Frantzis, R. D. De Roo, and F. T. Ulaby, "An ultrafast wide-band millimeter-wave (MMW) polarimetric radar for remote sensing applications," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, 1777-1786, 2002.
    doi:10.1109/TGRS.2002.802462

    8. Capmany, J., J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, "Microwave photonic signal processing," Journal of Lightwave Technology, Vol. 31, 571-586, 2013.
    doi:10.1109/JLT.2012.2222348

    9. Capmany, J. and D. Novak, "Microwave photonics combines two worlds," Nature Photonics, Vol. 1, 319-330, 2007.
    doi:10.1038/nphoton.2007.89

    10. Yu, X., K. Wang, X. Zheng, and H. Zhang, "Incoherent photonic digital-to-analogue converter based on broadband optical source," Electronics Letters, Vol. 43, 1, 2007.
    doi:10.1049/el:20073849

    11. Han, Y. and B. Jalali, "Photonic time-stretched analog-to-digital converter: Fundamental concepts and practical considerations," Journal of Lightwave Technology, Vol. 21, 3085, 2003.
    doi:10.1109/JLT.2003.821731

    12. Lin, I. S., J. D. McKinney, and A. M. Weiner, "Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication," IEEE Microwave and Wireless Components Letters, Vol. 15, 226-228, 2005.
    doi:10.1109/LMWC.2005.845698

    13. Jason, C., H. Yan, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEICE Transactions on Electronics, Vol. 86, 1226-1229, 2003.

    14. Yao, J., "Photonic generation of microwave arbitrary waveforms," Optics Communications, Vol. 284, 3723-3736, 2011.
    doi:10.1016/j.optcom.2011.02.069

    15. Chen, L. R., "Photonic generation of chirped microwave and millimeter wave pulses based on optical spectral shaping and wavelength-to-time mapping in silicon photonics," Optics Communications, Vol. 373, 70-81, 2016.
    doi:10.1016/j.optcom.2015.04.023

    16. Fandino, J. S., P. Munoz, D. Domenech, and J. Capmany, "A monolithic integrated photonic microwave filter," Nature Photonics, Vol. 11, 124-129, Oct. 23, 2016.
    doi:10.1038/nphoton.2016.233

    17. Marpaung, D., C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, "Integrated microwave photonics," Laser & Photonics Reviews, Vol. 7, 506-538, 2013.
    doi:10.1002/lpor.201200032

    18. Shoeiby, M., A. Mitchell, and L. Bui, "Real time all optical correlator for serialized time encoded signals," Optics Communications, Vol. 338, 34-39, 2015.
    doi:10.1016/j.optcom.2014.10.024

    19. Sarkhosh, N., H. Emami, L. Bui, and A. Mitchell, "Reduced cost photonic instantaneous frequency measurement system," IEEE Photonics Technology Letters, Vol. 20, 1521-1523, 2008.
    doi:10.1109/LPT.2008.927895

    20. Emami, H., N. Sarkhosh, L. Bui, and A. Mitchell, "Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform," Optics Express, Vol. 16, 13707-13712, 2008.
    doi:10.1364/OE.16.013707

    21. Emami, H., N. Sarkhosh, L. A. Bui, and A. Mitchell, "Wideband RF photonic in-phase and quadrature-phase generation," Optics Letters, Vol. 33, 98-100, 2008.
    doi:10.1364/OL.33.000098

    22. Rashidinejad, A., Y. Li, and A. M. Weiner, "Recent advances in programmable photonic-assisted ultrabroadband radio-frequency arbitrary waveform generation," IEEE Journal of Quantum Electronics, Vol. 52, 1-17, 2016.
    doi:10.1109/JQE.2015.2506987

    23. Dezfooliyan, A. and A. M. Weiner, "Photonic synthesis of high fidelity microwave arbitrary waveforms using near field frequency to time mapping," Optics Express, Vol. 21, 22974-22987, 2013.
    doi:10.1364/OE.21.022974

    24. Weiner, A. M., "Ultrafast optical pulse shaping: A tutorial review," Optics Communications, Vol. 284, 3669-3692, 2011.
    doi:10.1016/j.optcom.2011.03.084

    25. Torres-Company, V., A. J. Metcalf, D. E. Leaird, and A. M. Weiner, "Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping," IEEE Photonics Technology Letters, Vol. 24, 891-893, 2012.
    doi:10.1109/LPT.2012.2190054

    26. Wang, J., et al., "Reconfigurable radio-frequency arbitrary waveforms synthesized in a silicon photonic chip," Nature Communications, Vol. 6, 2015.

    27. Bazargani, H. P. and J. Azana, "Optical pulse shaping based on discrete space-to-time mapping in cascaded co-directional couplers," Optics Express, Vol. 23, 23450-23461, 2015.
    doi:10.1364/OE.23.023450

    28. Bolea, M., J. Mora, B. Ortega, and J. Capmany, "Photonic arbitrary waveform generation applicable to multiband UWB communications," Optics Express, Vol. 18, 26259-26267, 2010.
    doi:10.1364/OE.18.026259

    29. Rashidinejad, A. and A. M. Weiner, "Photonic radio-frequency arbitrary waveform generation with maximal time-bandwidth product capability," Journal of Lightwave Technology, Vol. 32, 3383-3393, 2014.
    doi:10.1109/JLT.2014.2331491

    30. Li, Y., A. Dezfooliyan, and A. M. Weiner, "Photonic synthesis of spread spectrum radio frequency waveforms with arbitrarily long time apertures," Journal of Lightwave Technology, Vol. 32, 3580-3587, 2014.
    doi:10.1109/JLT.2014.2320933

    31. Mora, J., et al., "Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer," Journal of Lightwave Technology, Vol. 24, 2500, 2006.
    doi:10.1109/JLT.2006.874652

    32. Nguyen, T. G., et al., "Integrated frequency comb source based Hilbert transformer for wideband microwave photonic phase analysis," Optics Express, Vol. 23, 22087-22097, 2015.
    doi:10.1364/OE.23.022087

    33. Pasquazi, A., et al., "Self-locked optical parametric oscillation in a CMOS compatible microring resonator: A route to robust optical frequency comb generation on a chip," Optics Express, Vol. 21, 13333-13341, 2013.
    doi:10.1364/OE.21.013333

    34. Soref, R., "The past, present, and future of silicon photonics," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 12, 1678-1687, 2006.
    doi:10.1109/JSTQE.2006.883151

    35. Inniss, D. and R. Rubenstein, Silicon Photonics: Fueling the Next Information Revolution, Morgan Kaufmann, 2016.

    36. Rao, A., et al., "Secondharmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon," Optics Express, Vol. 24, 29941-29947, 2016.
    doi:10.1364/OE.24.029941

    37. Zhang, W. and J. Yao, "Silicon-based on-chip electrically-tunable spectral shaper for continuously tunable linearly chirped microwave waveform generation," Journal of Lightwave Technology, Vol. 34, 4664-4672, 2016.
    doi:10.1109/JLT.2016.2574125

    38. Metcalf, A. J., et al., "Integrated line-by-line optical pulse shaper for high-fidelity and rapidly reconfigurable RF-filtering," Optics Express, Vol. 24, 23925-23940, 2016.
    doi:10.1364/OE.24.023925

    39. Qin, C., et al., "Dynamic optical arbitrary waveform generation from a heterogeneously integrated InP/Si3N4 chip-scale module," Optical Fiber Communications Conference and Exhibition (OFC), 2016, 1-3, 2016.

    40. Liu, W., et al., "A fully reconfigurable photonic integrated signal processor," Nature Photonics, Vol. 10, 190-195, 2016.
    doi:10.1038/nphoton.2015.281

    41. Liao, S., Y. Ding, J. Dong, S. Yan, X. Wang, and X. Zhang, "Photonic arbitrary waveform generator based on Taylor synthesis method," Optics Express, Vol. 24, 24390-24400, 2016.
    doi:10.1364/OE.24.024390

    42. Asghari, M. H. and J. Azana, "Proposal and analysis of a reconfigurable pulse shaping technique based on multi-arm optical differentiators," Optics Communications, Vol. 281, 4581-4588, 2008.
    doi:10.1016/j.optcom.2008.05.037

    43. Chen, L. R., "Silicon photonics for microwave photonics applications," Journal of Lightwave Technology, Vol. 35, 824-835, 2017.
    doi:10.1109/JLT.2016.2613861

    44. Rius, M., M. Bolea, J. Mora, and J. Capmany, "Incoherent photonic processing for chirped microwave pulse generation," IEEE Photonics Technology Letters, Vol. 29, 7-10, 2017.
    doi:10.1109/LPT.2016.2623360

    45. Rius, M., M. Bolea, J. Mora, and J. Capmany, "Chirped waveform generation with envelope reconfigurability for pulse compression radar," IEEE Photonics Technology Letters, Vol. 28, 748-751, 2016.
    doi:10.1109/LPT.2015.2509022

    46. Li, Y. and A. M. Weiner, "Photonic-assisted error-free wireless communication with multipath precompensation covering 2–18 GHz," Journal of Lightwave Technology, Vol. 34, 4154-4161, 2016.
    doi:10.1109/JLT.2016.2591438

    47. Kim, H.-J., D. E. Leaird, and A. M. Weiner, "Rapidly tunable dual-comb RF photonic filter for ultrabroadband RF spread spectrum applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, 3351-3362, 2016.
    doi:10.1109/TMTT.2016.2599162

    48. Ma, C., et al., "Photonic generation of microwave triangular waveform based on polarization-dependent modulation efficiency of a single-drive Mach-Zehnder modulator," Optics Communications, Vol. 363, 207-210, 2016.
    doi:10.1016/j.optcom.2015.10.054

    49. Gao, Y., A. Wen, W. Liu, H. Zhang, and S. Xiang, "Photonic generation of triangular pulses based on phase modulation and spectrum manipulation," IEEE Photonics Journal, Vol. 8, 1-9, 2016.
    doi:10.1109/JPHOT.2016.2522089

    50. Li, J., et al., "Frequency-doubled triangular-shaped waveform generation based on spectrum manipulation," Optics Letters, Vol. 41, 199-202, 2016.
    doi:10.1364/OL.41.000199

    51. Yuan, J., et al., "Investigation on quadrupling triangularshaped pulses generator with flexible repetition rate tunability," Optical and Quantum Electronics, Vol. 48, 1-12, 2016.
    doi:10.1007/s11082-015-0274-3

    52. Yuan, J., T. Ning, J. Li, H. Chen, Y. Li, and C. Zhang, "A photonic-assisted periodic triangular-shaped pulses generator based on FWM effect in an SOA," Optics Communications, Vol. 381, 450-456, 2016.
    doi:10.1016/j.optcom.2015.11.067

    53. Wu, T., et al., "Simultaneous triangular waveform signal and microwave signal generation based on dual-loop optoelectronic oscillator," IEEE Photonics Journal, Vol. 8, 1-10, 2016.

    54. Zhou, P., F. Zhang, X. Ye, Q. Guo, and S. Pan, "Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser," IEEE Photonics Journal, Vol. 8, 1-9, 2016.