This paper presents a numerical study of microwave scattering and emission from a foam-covered ocean surface. The foam layer is modeled as an inhomogeneous layer with randomly rough air-foam and foam-seawater boundaries. Kelvin's Tetrakaidecahedron structure is selected as the skeleton for simulating the air bubbles in the foam layer. The electromagnetic characteristics of the foam layer, including absorption and scattering coefficients for both vertical and horizontal polarizations, are calculated using a multilevel volume UV fast algorithm to accelerate the numerical computation of three dimensional Maxwell's equations. The surface scattering at air-foam and foam-seawater interfaces is determined using the integral equation model (IEM). The microwave emission from the foam-covered ocean surface, which accounts for multiple incoherent interactions within the foam layer and between the foam and interfaces, is modeled using the vector radiative transfer approach and numerically solved using the matrix doubling method. The model analyses of volume scattering and absorption of the foam layer reveal that the volume scattering coefficient of a foam layer increases with increasing water fraction at all selected frequencies, and its polarization dependence is negligible at a water fraction less than 2%. At 10.8 GHz and 18 GHz, the H-polarized scattering coe±cient is smaller than the V-polarized scattering coefficient for a larger water fraction; the opposite occurs at 36.5 GHz, at which V polarized scattering is weaker compared to H-polarized scattering. The model analyses of emission from a foam-covered ocean surface reveal that the emissivities at all selected operating frequencies have similar dependencies with water fraction and frequency, and they exhibit different sensitivities to water fractions. Moreover, the emissivities at high operating frequencies exhibit higher sensitivities to water fractions than the lower ones.
2. Andreas, E. L., "Spray-mediated enthalpy flux to the atmosphere and salt flux to the ocean in the high winds," J. Phys. Oceanogr., Vol. 40, No. 3, 608-619, 2010.
doi:10.1175/2009JPO4232.1
3. Smith, P. M., "The emissivity of sea foam at 19 and 37 GHz," IEEE Trans. Geosci. Remote Sens., Vol. 26, No. 5, 541-547, 1988.
doi:10.1109/36.7679
4. Stogryn, "The emissivity of sea foam at microwave frequencies," J. Geophys. Res., Vol. 77, No. 9, 169-171, 1972.
doi:10.1029/JC077i009p01658
5. Rose, L. A., W. E. Asher, S. C. Resing, P. W. Gaiser, D. J. Dowgiallo, K. A. Horgan, G. Farquharson, and E. J. Knapp, "Radiometric measurements of microwave emissivity of foam," IEEE Trans. Geosci. Remote Sens., Vol. 40, No. 12, 2619-2625, 2002.
doi:10.1109/TGRS.2002.807006
6. Camps, A., M. Vall-llosera, R. Villarino, N. Reul, B. Chapron, I. Corbella, N. Duffo, F. Torres, J. J. Miranda, R. Sabia, A. Monerris, and R. Rodriguez, "The emissivity of foam-covered water surface at L-Band: Theoretical modeling and experimental results from the Frog 2003 field experiment," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 5, 925-937, 2005.
doi:10.1109/TGRS.2004.839651
7. Chen, D., L. Tsang, L. Zhou, S. C. Reising, W. E. Asher, L. A. Rose, K. H. Ding, and C. T. Chen, "Microwave emission and scattering of foam based on Monte Carlo simulations of dense media," IEEE Trans. Geosci. Remote Sens., Vol. 41, No. 4, 782-790, 2003.
doi:10.1109/TGRS.2003.810711
8. Raizer, V., "Macroscopic foam-spray models for ocean microwave radiometry," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 10, 3138-3144, 2007.
doi:10.1109/TGRS.2007.895981
9. Anguelova, M. D., "Complex dielectric constant of sea foam at microwave frequencies," J.Geophys. Res.: Oceans, Vol. 112, No. C8, 2008.
10. Anguelova, M. D. and P. M. Gaiser, "Microwave emissivity of sea foam layers with vertically inhomogeneous dielectric properties," Remote Sens. Environ., Vol. 139, No. 12, 81-96, 2013.
doi:10.1016/j.rse.2013.07.017
11. Yueh, S. H., "Modeling of wind direction signals in polarimetric sea surface brightness temperatures," IEEE Trans. Geosci. Remote Sens., Vol. 35, No. 6, 1400-1418, 1997.
doi:10.1109/36.649793
12. Weaire, D. and S. Hutzler, The Physics of Foam, Clarendon Press, Oxford, 1999.
13. Xu, P., L. Tsang, and D. Chen, "Application of the multilevel UV method to calculate microwave absorption and emission of the ocean foam with Kelvin’s Tetrakaidecahedron structure," Microw. Opt. Technol. Lett., Vol. 45, No. 5, 445-450, 2005.
doi:10.1002/mop.20849
14. Fung, A. K., Z. Li, and K. S. Chen, "Backscattering from a randomly rough dielectric surface," IEEE Trans. Geosci. Remote Sens., Vol. 30, No. 2, 335-359, Mar. 1992.
doi:10.1109/36.134085
15. Fung, A. K., Microwave Scattering and Emission Models and Its Applications, Artech House, Norwood, Massachusetts, 1994.
16. Tjuatja, S., A. K. Fung, and J. Bredow, "A scattering model for snow-covered sea ice," IEEE Trans. Geosci. Remote Sens., Vol. 30, No. 4, 804-810, 1992.
doi:10.1109/36.158876
17. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Vol. 3, Artech House, Norwood, Massachusetts, 1982.
18. Reul, N. and B. Chapron, "A model of sea-foam thickness distribution for passive microwave remote sensing applications," J. Geophys. Res., Vol. 108, No. C10, 894-895, 2003.
doi:10.1029/2003JC001887
19. Yaghjian, A. D., "Electric dyadic Green’s functions in the source region," Proc. IEEE, Vol. 68, No. 2, 248-263, 1980.
doi:10.1109/PROC.1980.11620
20. Tsang, L., J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Numerical Simulation, Wiley, New York, 2001.
doi:10.1002/0471224308
21. Fung, A. K. and H. J. Eom, "A theory of wave scattering from an inhomogeneous layer with an irregular interface," IEEE Trans. Antennas Propag., Vol. 29, No. 6, 899-910, 1981.
doi:10.1109/TAP.1981.1142679
22. Fung, A. K. and K. S. Chen, Microwave Scattering and Emission Models for Users, Artech House, Boston, 2010.
23. Fung, A. K., S. Tjuatja, J. W Bredow, and H. T. Chuah, "Dense medium phase and amplitude correction theory for spatially and electrically dense media," Proc. Int. Geosci. Remote Sens. Symp., Vol. 2, 1336-1338, 1995.
24. Sihvola, A., Electromagnetic Mixing Formulas and Applications, The Institute of Electrical Engineers, London, 1999.
doi:10.1049/PBEW047E
25. Klein, L. A. and C. T. Swift, "An improved model for the dielectric constant of sea water at microwave frequencies," IEEE Trans. Antennas Propag., Vol. 25, No. 1, 104-111, 1977.
doi:10.1109/TAP.1977.1141539
26. Anguelova, M. D. and P. W. Gaiser, "Skin depth at microwave frequencies of sea foam layers with vertical profile of void fraction," J. Geophys. Res.: Oceans, Vol. 116, No. C11, 2011.
doi:10.1029/2011JC007372
27. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, 7th Ed., Academic Press, New York, 2007.
28. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast Efficient Algorithm in Computational Electromagnetics, Artech House, Boston, 2001.