Vol. 79

Latest Volume
All Volumes
All Issues
2017-10-20

Comparative Study of the Rytov and Born Approximations in Quantitative Microwave Holography

By Daniel Tajik, Aaron D. Pitcher, and Natalia K. Nikolova
Progress In Electromagnetics Research B, Vol. 79, 1-19, 2017
doi:10.2528/PIERB17081003

Abstract

Quantitative microwave holography is a recent imaging methodology that shows promise in medical diagnostics. It is a real-time direct inversion algorithm that reconstructs the complex permittivity from S-parameter measurements on an acquisition surface outside of the imaged object. It is recognized that this imaging method su ers from limitations in tissue imaging due to a forward model which linearizes a highly nonlinear scattering problem. It is therefore important to study its limitations when reconstruction is aided by certain pre- and post-processing filters which are known to improve the image quality. The impact of ltering on the quantitative result is particularly important. In this work, the reconstruction equations of quantitative microwave holography are derived from rst principles. The implementation of two linearizations strategies, Born's approximation and Rytov's approximation, is explained in detail in the case of a scattering model formulated in terms of S-parameters. Furthermore, real-space and Fourier-space lters are developed to achieve the best performance for the given linearized model of scattering. Simulated and experimental results demonstrate the limitations of the method and the necessity of ltering. The two approximations are also compared in experimental tissue reconstructions.

Citation


Daniel Tajik, Aaron D. Pitcher, and Natalia K. Nikolova, "Comparative Study of the Rytov and Born Approximations in Quantitative Microwave Holography," Progress In Electromagnetics Research B, Vol. 79, 1-19, 2017.
doi:10.2528/PIERB17081003
http://test.jpier.org/PIERB/pier.php?paper=17081003

References


    1. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 9, 1581-1592, Sep. 2001.
    doi:10.1109/22.942570

    2. Xu, H., T. Li, and Y. Sun, "The application research of microwave imaging in nondestructive testing of concrete wall," Proc. World Cong. Intell. Control Autom., 5157-5161, Dalian, 2006.

    3. Kharkovsky, S. and R. Zoughi, "Microwave and millimeter wave nondestructive testing and evaluation — Overview and recent advances," IEEE Instrum. Meas. Mag., Vol. 10, No. 2, 26-38, Apr. 2007.
    doi:10.1109/MIM.2007.364985

    4. Ahmad, F., M. G. Amin, and S. A. Kassam, "Synthetic aperture beamformer for imaging through a dielectric wall," IEEE Trans. Aerosp. Electron. Syst., Vol. 41, No. 1, 271-283, Jan. 2005.
    doi:10.1109/TAES.2005.1413761

    5. Amin, M. G., Through-the-wall Radar Imaging, CRC Press, 2016.

    6. Nikolova, N. K., "Microwave biomedical imaging," Wiley Encyc. Elec. Electron. Eng., 1-22, Apr. 25, 2014.

    7. Conceio, R. C., J. J. Mohr, and M. O’Halloran, An Introduction to Microwave Imaging for Breast Cancer Detection, Springer, 2016.

    8. Kwon, S. and S. Lee, "Recent advances in microwave imaging for breast cancer detection," Int. J. Biomed. Imaging, Vol. 2016, 25 pages, Article ID 5054912, 2016.

    9. Bindu, G. N., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
    doi:10.2528/PIER05081802

    10. Porter, E., A. Santorelli, and M. Popovic, "Time-domain microwave radar applied to breast imaging: Measurement reliability in a clinical setting," Progress In Electromagnetics Research, Vol. 149, 119-132, 2014.
    doi:10.2528/PIER14080503

    11. Wang, X., D. R. Bauer, R. Witte, and H. Xin, "Microwave-induced thermoacoustic imaging model for potential breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 59, No. 10, 2782-2791, Oct. 2012.
    doi:10.1109/TBME.2012.2210218

    12. Xia, J., J. Yao, and L. H. V. Wang, "Photoacoustic tomography: Principles and advances (invited review)," Progress In Electromagnetics Research, Vol. 147, 1-22, 2014.
    doi:10.2528/PIER14032303

    13. Fear, E. C. and M. A. Stuchly, "Confocal microwave imaging for breast tumor detection: A study of resolution and detection ability," Proc. Int. Conf. IEEE Eng. Med. Bio. Soc., Vol. 3, 2355-2358, 2001.

    14. Slaney, M., A. C. Kak, and L. E. Larsen, "Limitations of imaging with first-order diffraction tomography," IEEE Trans. Microw. Theory Techn., Vol. 32, No. 8, 860-874, Aug. 1984.
    doi:10.1109/TMTT.1984.1132783

    15. Tu, S., J. J. McCombe, D. S. Shumakov, and N. K. Nikolova, "Fast quantitative microwave imaging with resolvent kernel extracted from measurements," Inverse Probl., Vol. 31, No. 4, 045007 (33 pages), Apr. 2015.
    doi:10.1088/0266-5611/31/4/045007

    16. Tricoles, G. and N. H. Farhat, "Microwave holography, applications and techniques," Proc. IEEE, Vol. 65, No. 1, 108-121, Jan. 1998.
    doi:10.1109/PROC.1977.10435

    17. Li, J., X. Wang, and T. Wang, "On the validity of Born approximation," Progress In Electromagnetics Research, Vol. 107, 219-237, 2010.
    doi:10.2528/PIER10070504

    18. Habashy, T. M., R. W. Groom, and B. R. Spies, "Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering," J. Geophys. Res., Vol. 98, No. B2, 1759-1775, Feb. 1993.
    doi:10.1029/92JB02324

    19. Kak, A. and M. Slaney, Principles of Computerized Tomographic Imaging, Society for Industrial and Applied Mathematics, 2001.
    doi:10.1137/1.9780898719277

    20. Chew, W., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

    21. Nikolova, N. K., Introduction to Microwave Imaging, Cambridge University Press, 2017.
    doi:10.1017/9781316084267

    22. Tajik, D., D. S. Shumakov, and N. K. Nikolova, "An experimental comparison between the Born and Rytov approximations in microwave tissue imaging," IEEE Int. Microw. Symp., Jun. 2017.

    23. Farhat, N. H. and W. R. Guard, "Millimeter wave holographic imaging of concealed weapons," Proc. IEEE, Vol. 59, No. 9, 1383-1384, Sep. 1971.
    doi:10.1109/PROC.1971.8441

    24. Amineh, R. K., M. Ravan, J. McCombe, and N. K. Nikolova, "Three-dimensional microwave holographic imaging employing forward-scattered waves only," Int. J. Antennas Propag., Vol. 2013, Article ID 897287 (15 pages), Feb. 2013.

    25. Tajik, D., J. R. Thompson, A. S. Beaverstone, and N. K. Nikolova, "Real-time quantitative reconstruction based on microwave holography," IEEE Int. Symp. Antennas Propag. (APS/URSI), 851-852, Fajardo, PR, 2016.

    26. Amineh, R. K., J. J. McCombe, A. Khalatpour, and N. K. Nikolova, "Microwave holography using point-spread functions measured with calibration objects," IEEE Trans. Instrum. Meas., Vol. 64, No. 2, 403-417, Feb. 2015.
    doi:10.1109/TIM.2014.2347652

    27. Thompson, J. R., J. J. McCombe, S. Tu, and N. K. Nikolova, "Quantitative imaging of dielectric objects based on holographic reconstruction," 2015 IEEE Radar Conf. (RadarCon), 679-683, May 2015.
    doi:10.1109/RADAR.2015.7131082

    28. Khare, K., Fourier Optics and Computational Imaging, Wiley, 2016.

    29. Mohamed, S. A., E. D. Mohamed, M. F. Elshikh, and M. A. Hassan, "Design of digital apodization technique for medical ultrasound imaging," Int. Conf. Comput., Electr. Electron. Eng., 541-544, Khartoum, 2013.

    30. Bell, R., "Introduction to Fourier transform spectroscopy," Science, 2012.

    31. Beaverstone, A. S., D. S. Shumakov, and N. K. Nikolova, "Frequency-domain integral equations of scattering for complex scalar responses," IEEE Trans. Microw. Theory Techn., Vol. 65, No. 4, 1120-1132, Apr. 2016.
    doi:10.1109/TMTT.2016.2638428

    32. Pastorino, M., Microwave Imaging, Wiley, 2010.
    doi:10.1002/9780470602492

    33. Natterer, F., "An error bound for the Born approximation," Inverse Probl., Vol. 20, No. 2, 447-452, 2004.
    doi:10.1088/0266-5611/20/2/009

    34. Slaney, M., A. C. Kak, and L. E. Larsen, "Limitations of imaging with first-order diffraction tomography," IEEE Trans. Microw. Theory Tech., Vol. 32, No. 8, 860-874, 1984.
    doi:10.1109/TMTT.1984.1132783

    35. Brown, M. A. and R. C. Semelka, MRI: Basic Principles and Applications, Wiley, 2015.
    doi:10.1002/9781119013068

    36. Ansorge, R. and M. Graves, The Physics and Mathematics of MRI, Morgan and Claypool, 2016.
    doi:10.1088/978-1-6817-4068-3

    37. Goodman, J. W., Introduction to Fourier Optics, Roberts and Company, 2005.

    38. Szabo, T. L., Diagnostic Ultrasound Imaging: Inside and Out, Elsevier, 2014.

    39. Jerri, A. J., The Gibbs Phenomenon in Fourier Analysis, Splines, and Wavelet Approximations, Springer-Science Business Media, B. V., New York, 2010.

    40. EM Software & Systems — S. A. (Pty) Ltd., FEKO Suite 7.0.1 for Altair, USA, 2016.

    41. Keysight (Agilent) Technologies, "Dielectric Probe Kit 200 MHz to 50 GHz, 85070E,", USA, 2014.

    42. Shumakov, D. S., A. S. Beaverstone, and N. K. Nikolova, "De-noising algorithm for enhancing microwave imaging," J. Eng., 5 pages, 2017.

    43. Amineh, R. K., A. Trehan, and N. K. Nikolova, "TEM horn antenna for ultra-wide band microwave breast imaging," Progress In Electromagnetics Research B, Vol. 13, 59-74, 2009.
    doi:10.2528/PIERB08122213

    44. The MathWorks, Inc., MATLAB 2016a, USA, 2016.