A class of rigorous formulas for the efficient extraction of the full polarizability matrix of electrically small particles is introduced in this paper. After the dipole approximation of the scatterer, under study, the latter is placed on a two-dimensional square array, illuminated by four normally incident plane waves, and eventually its polarizabilities are expressed in terms of induced dipole moments. Then, by applying an equivalent surface model for the array, the induced dipoles are calculated as a function of the reflection/transmission coefficients from the array. Lastly, the combination of the previous formulations leads to the final expressions for the polarizability matrix of the particle. In order to verify the featured methodology, the extracted polarizabilities are involved in radar cross section and total radiated power calculations for various incidences and are compared with their simulated counterparts.
2. Alu, A., "First-principles homogenization theory for periodic metamaterials," Phys. Rev. B, Vol. 84, No. 7, 075153, 2011.
doi:10.1103/PhysRevB.84.075153
3. Liu, X. X. and A. Alu, "Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach," Phys. Rev. B, Vol. 87, No. 23, 235136, 2013.
doi:10.1103/PhysRevB.87.235136
4. Karamanos, T. D., S. D. Assimonis, A. I. Dimitriadis, and N. V. Kantartzis, "Effective parameter extraction of 3D metamaterial arrays via first-principles homogenization theory," Photonics Nanostructures: Fundam. Appl., Vol. 12, No. 4, 291-297, 2014.
doi:10.1016/j.photonics.2014.04.005
5. Simovski, C. R., B. Sauviac, and S. L. Prosvirnin, "Homogenization of an array of S-shaped particles located on a dielectric interface," Progress In Electromagnetics Research, Vol. 39, 249-264, 2003.
doi:10.2528/PIER02093001
6. Mohamed, M. A., E. F. Kuester, M. Piket-May, and C. L. Holloway, "The field of an electric dipole and the polarizability of a conducting object embedded in the interface between dielectric materials," Progress In Electromagnetics Research B, Vol. 16, 1-20, 2009.
doi:10.2528/PIERB09050408
7. Dimitriadis, A. I., N. V. Kantartzis, T. D. Tsiboukis, and C. Hafner, "Generalized non-local surface susceptibility model and Fresnel coefficients for the characterization of periodic metafilms with bianisotropic scatterers," J. Comput. Phys., Vol. 281, 251-268, 2015.
doi:10.1016/j.jcp.2014.10.028
8. Andryieuski, A., A. V. Lavrinenko, M. Petrov, and S. A. Tretyakov, "Homogenization of metasurfaces formed by random resonant particles in periodical lattices," Phys. Rev. B, Vol. 93, No. 20, 205127, 2016.
doi:10.1103/PhysRevB.93.205127
9. Dimitriadis, A. I., T. D. Karamanos, N. V. Kantartzis, and T. D. Tsiboukis, "Effective-surface modeling of infinite periodic metascreens exhibiting the extraordinary transmission phenomenon," J. Opt. Soc. Am. B, Vol. 33, No. 3, 434-444, 2016.
doi:10.1364/JOSAB.33.000434
10. Alaee, R., M. Albooyeh, and C. Rockstuhl, "Theory of metasurface based perfect absorbers," J. Phys. D: Appl. Phys., Vol. 50, No. 50, 503002, 2017.
doi:10.1088/1361-6463/aa94a8
11. Sihvola, A. H., Electromagnetic Mixing Formulas and Applications, IET Publishers, Stevenage, 1999.
doi:10.1049/PBEW047E
12. Marques, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge-and broadside-coupled split ring resonators for metamaterial design-theory and experiments," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2572-2581, 2003.
doi:10.1109/TAP.2003.817562
13. Mirmoosa, M., Y. Ra'di, V. Asadchy, C. Simovski, and S. Tretyakov, "Polarizabilities of nonreciprocal bianisotropic particles," Phys. Rev. Appl., Vol. 1, No. 3, 034005, 2014.
doi:10.1103/PhysRevApplied.1.034005
14. Terekhov, Y. E., A. V. Zhuravlev, and G. V. Belokopytov, "The polarizability matrix of split-ring resonators," Moscow Univ. Phys. Bull., Vol. 66, 254-259, 2011.
doi:10.3103/S0027134911030222
15. Yazdi, M. and N. Komjani, "Polarizability tensor calculation using induced charge and current distributions," Progress In Electromagnetics Research M, Vol. 45, 123-130, 2016.
doi:10.2528/PIERM15092502
16. Asadchy, V. S., I. A. Faniayeu, Y. Ra'di, and S. A. Tretyakov, "Determining polarizability tensors for an arbitrary small electromagnetic scatterer," Photonics Nanostructures: Fundam. Appl., Vol. 12, No. 4, 298-304, 2014.
doi:10.1016/j.photonics.2014.04.004
17. Alaee, R., M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, "Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications," Phys. Rev. B, Vol. 91, 115119, 2015.
doi:10.1103/PhysRevB.91.115119
18. Scher, A. D. and E. F. Kuester, "Extracting the bulk effective parameters of a metamaterial via the scattering from a single planar array of particles," Metamaterials, Vol. 3, No. 1, 44-55, 2009.
doi:10.1016/j.metmat.2009.02.001
19. Karamanos, T. D., A. I. Dimitriadis, and N. V. Kantartzis, "Robust technique for the polarisability matrix retrieval of bianisotropic scatterers via their reflection and transmission coefficients," IET Microw. Antennas Propag., Vol. 8, No. 15, 1398-1407, 2014.
doi:10.1049/iet-map.2013.0551
20. Karamanos, T. and N. Kantartzis, "Polarizability matrix retrieval of a non-planar chiral particle through scattering parameter," Appl. Phys. A, Vol. 122, No. 4, 378, 2016.
doi:10.1007/s00339-016-9855-7
21. Jelinek, L. and J. Machac, "A polarizability measurement method for electrically small particles," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1051-1053, 2014.
doi:10.1109/LAWP.2014.2327152
22. Pulido-Mancera, L., P. T. Bowen, M. F. Imani, N. Kundtz, and D. Smith, "Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling," Phys. Rev. B, Vol. 96, No. 23, 235402, 2017.
doi:10.1103/PhysRevB.96.235402
23. Liu, X.-X., Y. Zhao, and A. Alu, "Polarizability tensor retrieval for subwavelength particles of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 64, No. 6, 2301-2310, 2016.
doi:10.1109/TAP.2016.2546958
24. Tai, C.-T., Dyadic Green Functions in Electromagnetic Theory, IEEE Press, Piscataway, 1994.
25. Belov, P. A. and C. R. Simovski, "Homogenization of electromagnetic crystals formed by uniaxial resonant scatterers," Phys. Rev. E, Vol. 72, No. 2, 026615, 2005.
doi:10.1103/PhysRevE.72.026615
26. Scher, A. and E. Kuester, "Boundary effects in the electromagnetic response of a metamaterial in the case of normal incidence," Progress In Electromagnetics Research B, No. 14, 341-381, 2009.
doi:10.2528/PIERB09021107
27. Lee, S., B. Kang, H. Keum, N. Ahmed, J. Rogers, P. Ferreira, S. Kim, and B. Min, "Heterogeneously assembled metamaterials and metadevices via 3D modular transfer printing," Sci. Rep., Vol. 6, 27621, 2016.
doi:10.1038/srep27621
28. Serdyukov, A., I. Semchenko, S. Tretyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications, Gordon and Breach, Amsterdam, 2001.
29. Withayachumnankul, W., C. Fumeaux, and D. Abbott, "Compact electric-LC resonators for metamaterials," Opt. Express, Vol. 18, No. 25, 25912-25921, 2010.
doi:10.1364/OE.18.025912
30. CST Microwave StudioTM, Computer Simulation Technology, 2017.
31. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2258-2267, 2007.
doi:10.1109/TAP.2007.901950
32. Baena, J. D., R. Marques, F. Medina, and J. Martel, "Artificial magnetic metamaterial design by using spiral resonators," Phys. Rev. B, Vol. 69, No. 1, 014402, 2004.
doi:10.1103/PhysRevB.69.014402
33. Marques, R., F. Martin, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design and Microwave Applications, John Wiley & Sons, New York, 2011.
34. Sersic, I., C. Tuambilangana, T. Kampfrath, and A. F. Koenderink, "Magnetoelectric point scattering theory for metamaterial scatterers," Phys. Rev. B, Vol. 83, No. 24, 245102, 2011.
doi:10.1103/PhysRevB.83.245102
35. Gansel, J. K., M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, No. 5947, 1513-1515, 2009.
doi:10.1126/science.1177031
36. Marques, R., L. Jelinek, and F. Mesa, "Negative refraction from balanced quasi-planar chiral inclusions," Microw. Opt. Technol. Lett., Vol. 49, No. 10, 2606-2609, 2007.
doi:10.1002/mop.22736
37. Wang, B., J. Zhou, T. Koschny, and C. M. Soukoulis, "Nonplanar chiral metamaterials with negative index," Appl. Phys. Lett., Vol. 94, No. 15, 151112, 2009.
doi:10.1063/1.3120565
38. Silveirinha, M. G., "Boundary conditions for quadrupolar metamaterials," New J. Phys., Vol. 16, No. 8, 083042, 2014.
doi:10.1088/1367-2630/16/8/083042
39. Yaghjian, A., "Boundary conditions for electric quadrupolar continua," Radio Sci., Vol. 49, No. 12, 1289-1299, 2014.
doi:10.1002/2014RS005530
40. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1999.
41. Yaghjian, A. D., M. Silveirinha, A. Askarpour, and A. Alu, "Electric quadrupolarizability of a source-driven dielectric sphere," Progress In Electromagnetics Research B, Vol. 63, 95-106, 2015.
doi:10.2528/PIERB15052701
42. Alaee, A., C. Rockstuhl, and I. Fernandez-Corbaton, "An electromagnetic multipole expansion beyond the long-wavelength approximation," Opt. Commun., Vol. 407, 17-21, 2018.
doi:10.1016/j.optcom.2017.08.064
43. Volakis, J., Integral Equation Methods for Electromagnetics, IET Publishers, Stevenage, 2012.
44. Weber, W. and G. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B, Vol. 70, No. 12, 125429, 2004.
doi:10.1103/PhysRevB.70.125429
45. Scher, A. D., "Boundary effects in the electromagnetic response of a metamaterial using the point-dipole interaction model,", Ph.D. Thesis, University of Colorado at Boulder, Boulder, 2008.