Vol. 82

Latest Volume
All Volumes
All Issues

Multilayer Structural Diagnosis with Quasi-3D Microwave Imaging Using Ultrawideband Radio Frequency Noiselet Waveforms

By Tae Hee Kim and Ram M. Narayanan
Progress In Electromagnetics Research B, Vol. 82, 73-92, 2018


Microwave radar imaging is increasingly being used in infrastructure monitoring applications due to its low cost, rapid measurement time, non-contact characteristics, and ability to penetrate nonmetallic media. An appropriate waveform design must be designed to obtain accurate information on the targets observed or the features being probed. Ultrawideband (UWB) radio frequency (RF) noiselets are excellent candidate waveforms in view of their multiresolution and interference rejection features. In this paper, a waveform optimization approach for UWB noiselet waveforms is described to achieve high peak-to-sidelobe ratio (PSLR) to enhance imaging capabilities. Synthetic aperture radar (SAR) scanning for microwave imaging is introduced after analyzing the essential microwave approaches for the multilayered structure. Image reconstruction using SAR scanning is performed for various multilayered structures and quasi-3D images of these structures are presented for nondestructive testing and evaluation (NDT&E) applications.


Tae Hee Kim and Ram M. Narayanan, "Multilayer Structural Diagnosis with Quasi-3D Microwave Imaging Using Ultrawideband Radio Frequency Noiselet Waveforms," Progress In Electromagnetics Research B, Vol. 82, 73-92, 2018.


    1. Narayanan, R. M., "Through-wall radar imaging using UWB noise waveforms," J. Franklin Inst., Vol. 345, No. 6, 659-678, 2008.

    2. Kulpa, K., K. Lukin, W. Miceli, and T. Thayaparan, "Signal processing in noise radar technology," IET Radar Sonar Navig., Vol. 2, No. 4, 229-232, 2008.

    3. Dawood, M. and R. M. Narayanan, "Multipath and ground clutter analysis for a UWB noise radar," IEEE Trans. Aerosp. Electron. Syst., Vol. 38, No. 3, 838-853, 2002.

    4. Chen, P. H., M. C. Shastry, C. P. Lai, and R. M. Narayanan, "A portable real-time digital noise radar system for through-the-wall imaging," IEEE Trans. Geosci. Remote Sens., Vol. 50, No. 10, 4123-4134, 2012.

    5. Tarchi, D., K. Lukin, J. Fortuny-Guasch, A. Mogyla, P. Vyplavin, and A. Sieber, "SAR imaging with noise radar," IEEE Trans. Aerosp. Electron. Syst., Vol. 46, No. 3, 1214-1225, 2010.

    6. Kim, T. H. and R. M. Narayanan, "Wideband radio frequency noiselet waveforms for multiresolution nondestructive testing of multilayered structures," Progress In Electromagnetics Research B, Vol. 81, 1-23, 2018.

    7. Coifman, R., F. Geshwind, and Y. Meyer, "Noiselets," Appl. Comput. Harmon. Anal., Vol. 10, No. 1, 27-44, 2001.

    8. Candes, E. and J. Romberg, "Sparsity and incoherence in compressive sampling," Inverse Prob., Vol. 23, 969-985, 2007.

    9. Keep, D. N., "Frequency-modulation radar for use in the mercantile marine," Proc. IEE --- Part B: Radio Electr. Electron., Vol. 103, No. 10, 519-523, 1956.

    10. Narayanan, R. M., X. Xu, and J. A. Henning, "Radar penetration imaging using ultra-wideband (UWB) random noise waveforms," IET Radar Sonar Navig., Vol. 151, No. 3, 143-148, 2004.

    11. Sivadas, N. A. and S. S. Mohammed, "A joint technique for sidelobe suppression and peak-to-average power ratio reduction in non-contiguous OFDM-based cognitive radio networks," Int. J. Electron., Vol. 104, No. 2, 190-203, 2017.

    12. Navagato, M. D. and R. M. Narayanan, "Microwave imaging using ultra-wideband noise waveforms for nondestructive testing of multilayer structures," Proc. SPIE Conf. on Radar Sensor Technology XXII, 1063314-1-1063314-13, Orlando, FL, USA, Apr. 2018.

    13. Bossi, R. H. and G. E. Georgeson, "Nondestructive testing of composites," Mater. Eval., Vol. 76, No. 8, 1049-1060, 2018.

    14. Sato, N., M. Hojo, and M. Nishikawa, "Intralaminar fatigue crack growth properties of conventional and interlayer toughened CFRP laminate under mode I loading," Composites Part A, Vol. 68, 202-211, 2015.

    15. Agarwal, B. D. and L. J. Broutman, Analysis and Performance of Fiber Composites, John Wiley & Sons, New York, NY, USA, 1990.

    16. Garrett, K. W. and J. E. Bailey, "Multiple transverse fracture in 90◦ cross-ply laminates of a glass fiber-reinforced polyester," J. Mater. Sci., Vol. 12, No. 1, 157-168, 1977.

    17. Karandikar, P. and T.-W. Chou, "Characterization and modeling of microcracking and elastic-moduli changes in Nicalon CAS composites," Compos. Sci. Technol., Vol. 46, No. 3, 253-263, 1993.

    18. Zhong, Y. and S. C. Joshi, "Initiation of structural defects in carbon fiber reinforced polymer composites under hygrothermal environments," J. Compos. Mater., Vol. 50, No. 8, 1085-1097, 2016.

    19. Narayanan, R. M. and R. James, "Microwave nondestructive testing of galvanic corrosion and impact damage in carbon fiber reinforced polymer composites," Int. J. Microwaves Appl., Vol. 7, No. 1, 1-15, 2018.

    20. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., John Wiley & Sons, New York, NY, USA, 2012.

    21. Richards, M. A., Fundamentals of Radar Signal Processing, McGraw-Hill, New York, NY, USA, 2005.

    22. Dehmollaian, M. and K. Sarabandi, "Refocusing through building walls using synthetic aperture radar," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 6, 1589-1599, Jun. 2008.

    23. Stolt, R. H., "Migration by Fourier transform," Geophys., Vol. 43, No. 1, 23-48, 1978.

    24. Lopez-Sanchez, J. M. and J. Fortuny-Guasch, "3-D radar imaging using range migration techniques," IEEE Trans. Antennas Propag., Vol. 48, No. 5, 728-737, 2000.

    25. Zoughi, R. and B. Zonnefeld, "Permittivity characteristics of kevlar, carbon composites, E-glass, and rubber (33% carbon) at X-band (8-12 GHz)," Review of Progress in Quantitative Nondestructive Evaluation, Vol. 10B, Chapter 38, 1431-1436, Plenum Press, New York, NY, USA, 1991.

    26. Seo, I. L., W. S. Chin, and D. G. Lee, "Characterization of electromagnetic properties of polymeric composite materials with free space method," Compos. Struct., Vol. 66, 533-542, 2004.

    27. Tereshchenko, O. V., F. J. K. Buesink, and F. B. J. Leferink, "Measurement of complex permittivity of composite materials using waveguide method," Proc. 10th International Symp. on Electromagnetic Compatibility (EMC Europe 2011), 52-56, York, UK, Sep. 2011.

    28. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propag., Vol. 34, No. 3, 276-280, 1986.

    29. Shrestha, S. M. and I. Arai, "Signal processing of ground penetrating radar using spectral estimation techniques to estimate the position of buried targets," EURASIP J. Appl. Signal Process., Vol. 2003, No. 12, 1198-1209, 2003.

    30. Iakovleva, E., S. Gdoura, D. Lesselier, and G. Perrusson, "Multistatic response matrix of a 3-D inclusion in half space and MUSIC imaging," IEEE Trans. Antennas Propag., Vol. 55, No. 9, 2598-2609, 2007.

    31. Agarwal, K. and X. Chen, "Applicability of MUSIC-type imaging in two-dimensional electromagnetic inverse problems," IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3217-3223, 2008.

    32. Abou-Khousa, M. A., D. L. Simms, S. Kharkovsky, and R. Zoughi, "High-resolution short-range wideband FMCW radar measurements based on MUSIC algorithm," Proc. 2009 IEEE International Instrumentation and Measurement Technology Conf. (I2MTC 2009), Singapore, May 2009, DOI: 10.1109/IMTC.2009.5168500.

    33. Shirmehenji, F., A. Zeidaabadi-Nezhad, and Z. H. Firouzeh, "Object locating of electromagnetic inclusions in anisotropic permeable background using MUSIC algorithm," Progress In Electromagnetics Research C, Vol. 85, 77-89, 2018.