Vol. 84

Latest Volume
All Volumes
All Issues
2019-07-07

Triple Two-Level Nested Array with Improved Degrees of Freedom

By Sheng Liu, Qiaoge Liu, Jing Zhao, and Ziqing Yuan
Progress In Electromagnetics Research B, Vol. 84, 135-151, 2019
doi:10.2528/PIERB19031603

Abstract

A triple two-level nested array (TTNA) configuration is proposed for direction-of-arrival (DOA) estimation of multiple time-space signals. The proposed TTNA consists of multiple two-level nested arrays, and the distance between two adjacent nested arrays is also given according to a nested array. As traditional nested arrays, it can generate a hole-free different co-array. Compared with some preexisting nested arrays, the proposed nested array can offer more degrees of freedom (DOFs). The closed-form expression of DOFs and the array configuration are given. Moreover, the detailed process for the construction of extended covariance matrix also is obtained. The simulation results show that the proposed method offers improved performance in the precision of DOA estimation due to the increase of virtual sensors.

Citation


Sheng Liu, Qiaoge Liu, Jing Zhao, and Ziqing Yuan, "Triple Two-Level Nested Array with Improved Degrees of Freedom," Progress In Electromagnetics Research B, Vol. 84, 135-151, 2019.
doi:10.2528/PIERB19031603
http://test.jpier.org/PIERB/pier.php?paper=19031603

References


    1. Moffet, A., "Minimum-redundancy linear arrays," IEEE Transactions on Antennas and Propagation, Vol. 16, No. 2, 172-175, 1968.
    doi:10.1109/TAP.1968.1139138

    2. Vaidyanathan, P. P. and P. Pal, "Sparse sensing with co-prime samplers and arrays," IEEE Transactions on Signal Processing, Vol. 59, No. 2, 573-586, 2011.
    doi:10.1109/TSP.2010.2089682

    3. Qin, S., Y. D. Zhang, and M. G. Amin, "Generalized coprime array configurations for direction-of-arrival estimation," IEEE Transactions on Signal Processing, Vol. 63, No. 6, 1377-1390, 2015.
    doi:10.1109/TSP.2015.2393838

    4. Ren, S. W., W. J. Wang, and Z. H. Chen, "DOA estimation exploiting unified coprime array with multi-period subarrays," 2016 CIE International Conference on Radar (RADAR), Guangzhou, China, 2016.

    5. Chen, M., L. Gan, and W. Wang, "Co-prime arrays with reduced sensors (CARS) for direction-of-arrival estimation," 2017 Sensor Signal Processing for Defence Conference (SSPD), London, UK, 2017.

    6. Shi, J., G. Hu, X. Zhang, and Y. Xiao, "Symmetric sum coarray based co-prime MIMO configuration for direction of arrival estimation," AEU --- International Journal of Electronics and Communications, Vol. 94, 339-347, 2018.
    doi:10.1016/j.aeue.2018.07.022

    7. Shi, J., G. Hu, and X. Zhang, "Generalized co-prime MIMO radar for DOA estimation with enhanced degrees of freedom," IEEE Sensors Journal, Vol. 18, No. 3, 1203-1212, 2018.
    doi:10.1109/JSEN.2017.2782746

    8. Pal, P. and P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Transactions on Signal Processing, Vol. 58, No. 8, 4167-4181, 2010.
    doi:10.1109/TSP.2010.2049264

    9. Yang, M., A. M. Haimovich, and B. Chen, "A new array geometry for DOA estimation with enhanced degrees of freedom," 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, 3041-3045, Shanghai, China, 2016.
    doi:10.1109/ICASSP.2016.7472236

    10. Yang, M., L. Sun, X. Yuan, and B. Chen, "Improved nested array with hole-free DCA and more degrees of freedom," Electron. Lett., Vol. 52, No. 25, 2068-2070, 2016.
    doi:10.1049/el.2016.3197

    11. Iizuka, Y. and K. Ichige, "Extension of nested array for large aperture and high degree of freedom," IEICE Communications Express, Vol. 6, No. 6, 381-386, 2017.
    doi:10.1587/comex.2017XBL0031

    12. Liu, J., Y. Zhang, Y. Lu, S. Ren, and S. Cao, "Augmented nested arrays with enhanced DOF and reduced mutual coupling," IEEE Transactions on Signal Processing, Vol. 65, No. 21, 5549-5563, 2017.
    doi:10.1109/TSP.2017.2736493

    13. Shi, J., G. Hu, X. Zhang, and H. Zhou, "Generalized nested array: Optimization for degrees of freedom and mutual coupling," IEEE Communications Letters, Vol. 22, No. 6, 1208-1211, 2018.
    doi:10.1109/LCOMM.2018.2821672

    14. Yang, M., A. M. Haimovich, and X. Yuan, "A unified array geometry composed of multiple identical subarrays with hole-free difference coarrays for underdetermined DOA estimation," IEEE Access, Vol. 6, 14238-14254, 2018.
    doi:10.1109/ACCESS.2018.2813313

    15. Huang, H., B. Liao, X. Wang, X. Guo, and J. Huang, "A new nested array configuration with increased degrees of freedom," IEEE Access, Vol. 6, 1490-1497, 2018.
    doi:10.1109/ACCESS.2017.2779171

    16. Liu, S., J. Zhao, D. Wu, and H. Cao, "Grade nested array with increased degrees of freedom for quasi-stationary signals," Progress In Electromagnetics Research LetterS, Vol. 80, 75-82, 2018.
    doi:10.2528/PIERL18100604

    17. Liu, S., L. Yang, and D. Li, "Subspace extension algorithm for 2D DOAestimation with L-shaped sparse array," Multidimensional Systems & Signal Processing, Vol. 28, 315-327, 2017.
    doi:10.1007/s11045-016-0406-3

    18. Ahmed, A., Y. D. Zhang, and B. Himed, "Effective nested array design for fourth-order cumulantbased DOA estimation," IEEE Radar Conference, 0998-1002, Seattle, WA, USA, 2017.

    19. Zhang, L., S. Ren, and X. Li, "Generalized L-shaped nested array concept based on the fourth-order difference co-array," Sensors, Vol. 18, 8, 2018.

    20. Yang, M., L. Sun, X. Yuan, and B. Chen, "A new nested MIMO array with increased degrees of freedom and hole-free difference coarray," IEEE Signal Processing Letters, Vol. 25, No. 1, 40-44, 2018.
    doi:10.1109/LSP.2017.2766294

    21. Liu, Q., B. Wang, X. Li, J. Tian, T. Cheng, and S. Liu, "An optimizing nested MIMO array with hole-free difference coarray," MATEC Web of Conferences, Vol. 232, EDP Sciences, 2018.

    22. Morabito, A. F. and P. G. Nicolaci, "Optimal synthesis of shaped beams through concentric ring isophoric sparse arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 979-982, 2017.
    doi:10.1109/LAWP.2016.2615762

    23. Pal, P. and P. P. Vaidyanathan, "Coprime sampling and the MUSIC algorithm," Proceedings of Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop (DSP/SPE), 289-294, Sedona, AZ, USA, 2011.

    24. Gu, J. F., P. Wei, and H. M. Tai, "2-D direction-of-arrival estimation of coherent signals using cross-correlation matrix," Signal Processing, Vol. 88, 75-85, 2008.
    doi:10.1016/j.sigpro.2007.07.013

    25. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, 1986.
    doi:10.1109/TAP.1986.1143830

    26. Richard, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Trans. Acous, Speech, and Signal Process., Vol. 37, No. 7, 984-995, 1989.
    doi:10.1109/29.32276