The present paper studies the characteristics of electromagnetic scattering from vegetation models constructed as random wire structures for the purpose of PolSAR imaging and ground surface cover recognition and classification. Radar vegetation index (RVI) has been developed for the purpose of vegetation growth monitoring. Anew method is proposed to use the RVI as an accurate monitor for the natural grassland height taking into account the operational parameters such as the PolSAR look angle and the operating frequency. Also, the present paper addresses a problem that may lead to false indications of the RVI measured for grassland areas. It frequently occurs that some of the narrow long leaves of the grass cloud are quasi-parallel and of nearly equal lengths leading to the generation of internally resonant modes. The enhancement or diminishing of the backscattered field at such internal resonances may give false indication of the RVI and, hence, wrong information can be estimated such as the water content and the grass height. A new method is proposed to model the natural grasslands as clouds of electrically conductive random curly strips for the purpose of obtaining the backscatter coefficients and, hence, the corresponding RVI. The error in height estimation using the proposed method due to the existence of the internal resonances is numerically investigated.
2. Ulaby, F. T. and T. F. Bush, "Monitoring wheat growth with radar," Photogramm. Eng. Remote Sens., Vol. 42, No. 4, 557-568, Apr. 1976.
3. Ulaby, F. T., C. T. Allen, G. Eger, and E. T. Kanemasu, "Relating the microwave backscattering coefficient to leaf area index," Remote Sens. Environ., Vol. 14, No. 1–3, 113-133, Jan. 1984.
doi:10.1016/0034-4257(84)90010-5
4. Oh, Y. S., S. Y. Hong, Y. J. Kim, J. Y. Hong, and Y. H. Kim, "Polarimetric backscattering coefficients of flooded rice fields at L- and C-bands: Measurements, modeling, and data analysis," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 8, 2714-2721, Aug. 2009.
doi:10.1109/TGRS.2009.2014053
5. Kim, Y. and J. Zyl, "On the relationship between polarimetric parameters," IGARSS 2000, IEEE 2000 International Geoscience and Remote Sensing Symposium, Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, Proceedings (Cat. No. 00CH37120), Vol. 3, 1298-1300, 2000.
6. Haldar, D., D. Viral, M. Arundhati, and B. Bimal, "Radar vegetation index for assessing cotton crop condition using RISAT-1 data," Geocarto International, 1-12, 2018.
doi:10.1080/10106049.2018.1516249
7. Szigarski, C., T. Jagdhuber, M. Baur, C. Thiel, M. Parrens, J. P. Wigneron, M. Piles, and D. Entekhabi, "Analysis of the radar vegetation index and potential improvements," Remote Sensing, Vol. 10, No. 11, 1776, 2018.
doi:10.3390/rs10111776
8. Kim, Y. and J. Zyl, "Comparison of forest estimation techniques using SAR data," Proc. IEEE IGARSS Conf., 1395-1397, 2001.
9. Kim, Y., T. Jackson, R. Bindlish, H. Lee, and S. Hong, "Radar vegetation index for estimating the vegetation water content of rice and soybean," IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 4, 564-568, Jul. 2012.
10. Kim, Y., T. Jackson, R. Bindlish, S. Hong, G. Jung, and K. Lee, "Retrieval of wheat growth parameters with radar vegetation indices," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 4, 808-812, 2014.
doi:10.1109/LGRS.2013.2279255
11. Zhang, L., Z. Bin, C. Hongjun, and Z. Ye, "Multiple-component scattering model for polarimetric SAR image decomposition," IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 4, 603-607, 2008.
doi:10.1109/LGRS.2008.2000795
12. Yoshio, Y., T. Moriyama, M. Ishido, and H. Yamada, "Four-component scattering model for polarimetric SAR image decomposition," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 8, 1699-1706, 2005.
doi:10.1109/TGRS.2005.852084
13. Freeman, A. and S. L. Durden, "A three-component scattering model for polarimetric SAR data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 3, 963-973, 1998.
doi:10.1109/36.673687
14. Hussein, K. F. A., "Effect of internal resonance on the radar cross section and shield effectiveness of open spherical enclosures," Progress In Electromagnetics Research, Vol. 70, 225-246, 2007.
doi:10.2528/PIER07012101
15. Colak, D., A. Altintas, and A. I. Nosich, "RCS study of cylindrical cavity-backed apertures with outer or inner material coating: The case of E-polarization," IEEE Trans. Antennas Propagat., Vol. 41, No. 11, 1551-1559, Nov. 1993.
doi:10.1109/8.267355
16. Soliman, S. A. M., A. E. Farahat, K. F. A. Hussein, and A. Ammar, "Spatial domain generation of random surface using savitzky-golay filter for simulation of electromagnetic polarimetric systems," Aces Journal, Vol. 34, No. 1, 148-161, Jan. 2019.
17. Hussein, K. F. A., "Fast computational algorithm for EFIE applied to arbitrarily-shaped conducting surfaces," Progress In Electromagnetics Research, Vol. 68, 339-357, 2007.
doi:10.2528/PIER06122502
18. Kocifaj, M., V. Gorden, and K. Jozef, "Backscatter in a cloudy atmosphere as a lightning-threat indicator," Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 150, 175-180, 2015.
doi:10.1016/j.jqsrt.2014.03.004
19. Kocifaj, M., K. Jozef, K. Frantisek, and V. Gorden, "Charge-induced electromagnetic resonances in nanoparticles," Annalen der Physik, Vol. 527, No. 11–12, 765-769, 2015.
doi:10.1002/andp.201500202
20. Szigarski, C., T. Jagdhuber, M. Baur, C. Thiel, M. Parrens, J. P. Wigneron, M. Piles, and D. Entekhabi, "Analysis of the radar vegetation index and potential improvements," Remote Sensing, Vol. 10, No. 11, 1776, 2018.
doi:10.3390/rs10111776