Vol. 86

Latest Volume
All Volumes
All Issues
2020-02-06

Novel MRA-Based Sparse MIMO and SIMO Antenna Arrays for Automotive Radar Applications

By Ashish Patwari and Ramachandra Reddy Gudheti
Progress In Electromagnetics Research B, Vol. 86, 103-119, 2020
doi:10.2528/PIERB19121602

Abstract

Automotive radars make use of angle information obtained from antenna arrays to distinguish objects that lie in the same range-Doppler cell (relative to the ego vehicle). This paper proposes novel ways of using presently known minimum redundancy arrays (MRAs) in single-input multiple-output (SIMO) and multiple-input multiple-output (MIMO) automotive radars. Firstly, an MRA-based sparse MIMO array is proposed as a novel modification to the nested MIMO array. The proposed sparse MIMO array uses MRAs as the transmitting and receiving modules, unlike the nested MIMO array, which uses two-level nested arrays (TLNAs) at the transmitting and receiving blocks. Upper bounds for the virtual array aperture and the overall attainable degrees of freedom (DOF) offered by the MIMO radar have been derived in terms of the number of sensors. Secondly, the suitability of large Low-Redundancy Linear Arrays (LRLAs) in SIMO automotive radars is also studied. A long-range automotive radar driving scenario was assumed for DOA estimation and simulations were carried out in MATLAB using the Co-array MUltiple SIgnal Classification (co-array MUSIC) algorithm. Simulation results confirm that the proposed MRA-based MIMO array provides better angular resolutions than the nested MIMO array for the same number of sensors and that LRLAs can serve as a handy replacement for ULAs in SIMO radars owing to their acceptable performance. As MIMO and SIMO radars designed from currently known MRAs were sufficient to satisfy the angular resolution requirements of modern automotive radars, a need to synthesize new MRAs did not arise.

Citation


Ashish Patwari and Ramachandra Reddy Gudheti, "Novel MRA-Based Sparse MIMO and SIMO Antenna Arrays for Automotive Radar Applications," Progress In Electromagnetics Research B, Vol. 86, 103-119, 2020.
doi:10.2528/PIERB19121602
http://test.jpier.org/PIERB/pier.php?paper=19121602

References


    1. Reina, G., D. Johnson, and J. Underwood, "Radar sensing for intelligent vehicles in urban environments," Sensors, Vol. 15, No. 6, 14661-14678, Jun. 2015.
    doi:10.3390/s150614661

    2. Hasch, J., E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, "Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 3, 845-860, Mar. 2012.
    doi:10.1109/TMTT.2011.2178427

    3. Chipengo, U., P. M. Krenz, and S. Carpenter, "From antenna design to high fidelity, full physics automotive radar sensor corner case simulation," Modelling and Simulation in Engineering, Vol. 2018, Article ID 4239725, 19 pages, 2018.

    4. Patole, S. M., M. Torlak, D. Wang, and M. Ali, "Automotive radars: A review of signal processing techniques," IEEE Signal Process. Mag., Vol. 34, No. 2, 22-35, Mar. 2017.
    doi:10.1109/MSP.2016.2628914

    5. Friedlander, B., "On the relationship between MIMO and SIMO radars," IEEE Trans. Signal Process., Vol. 57, No. 1, 394-398, Jan. 2009.
    doi:10.1109/TSP.2008.2007106

    6. Camps, A., A. Cardama, and D. Infantes, "Synthesis of large low-redundancy linear arrays," IEEE Trans. Antennas Propag., Vol. 49, No. 12, 1881-1883, Dec. 2001.
    doi:10.1109/8.982474

    7. Liu, C.-L. and P. P. Vaidyanathan, "Cramér-Rao bounds for coprime and other sparse arrays, which find more sources than sensors," Digit. Signal Process., Vol. 61, 43-61, Feb. 2017.
    doi:10.1016/j.dsp.2016.04.011

    8. Rawnaque, F. S. and J. R. Buck, "Comparing the effect of aperture extension on the peak sidelobe level of sparse arrays," J. Acoust. Soc. Am., Vol. 142, No. 5, EL467-EL472, Nov. 2017.
    doi:10.1121/1.5009112

    9. Huang, H., B. Liao, X. Wang, X. Guo, and J. Huang, "A new nested array configuration with increased degrees of freedom," IEEE Access, Vol. 6, 1490-1497, 2018.
    doi:10.1109/ACCESS.2017.2779171

    10. Zhou, C. and J. Zhou, "Direction-of-Arrival estimation with coarray ESPRIT for coprime array," Sensors, Vol. 7, No. 8, 1779, Aug. 2017.
    doi:10.3390/s17081779

    11. Liu, C., P. P. Vaidyanathan, and P. Pal, "Coprime coarray interpolation for DOA estimation via nuclear norm minimization," 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2639-2642, 2016.
    doi:10.1109/ISCAS.2016.7539135

    12. Abramovich, Y. I., N. K. Spencer, and A. Y. Gorokhov, "Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays," IEEE Trans. Signal Process., Vol. 47, No. 6, 1502-1521, Jun. 1999.
    doi:10.1109/78.765119

    13. Forsythe, K. W., D. W. Bliss, and G. S. Fawcett, "Multiple-input multiple-output (MIMO) radar: Performance issues," Conference Record of the Thirty-eighth Asilomar Conference on Signals, Systems and Computers, 2004, Vol. 1, 310-315, 2004.
    doi:10.1109/ACSSC.2004.1399143

    14. Chen, C.-Y. and P. P. Vaidyanathan, "Minimum redundancy MIMO radars," 2008 IEEE International Symposium on Circuits and Systems, 45-48, 2008.
    doi:10.1109/ISCAS.2008.4541350

    15. Rezer, K., W. Gropengieβer, and A. F. Jacob, "Particle swarm optimization of minimum-redundancy MIMO arrays," 2011 German Microwave Conference, 1-4, 2011.

    16. Dong, J., R. Shi, and Y. Guo, "Minimum redundancy MIMO array synthesis with a hybrid method based on cyclic difference sets and ACO," Int. J. Microw. Wirel. Technol., Vol. 9, No. 1, 35-43, Feb. 2017.
    doi:10.1017/S1759078715001257

    17. Dong, J., R. Shi, W. Lei, and Y. Guo, "Minimum redundancy MIMO array synthesis by means of cyclic difference sets," International Journal of Antennas and Propagation, Vol. 2013, Article ID 323521, 9 pages, 2013.

    18. Qin, S., Y. D. Zhang, and M. G. Amin, "DOA estimation of mixed coherent and uncorrelated targets exploiting coprime MIMO radar," Digit. Signal Process., Vol. 61, 26-34, Feb. 2017.
    doi:10.1016/j.dsp.2016.06.006

    19. Shi, J., G. Hu, X. Zhang, F. Sun, W. Zheng, and Y. Xiao, "Generalized co-prime MIMO radar for DOA estimation with enhanced degrees of freedom," IEEE Sens. J., Vol. 18, No. 3, 1203-1212, Feb. 2018.
    doi:10.1109/JSEN.2017.2782746

    20. Yang, M., L. Sun, X. Yuan, and B. Chen, "A new nested MIMO array with increased degrees of freedom and hole-free difference coarray," IEEE Signal Process. Lett., Vol. 25, No. 1, 40-44, Jan. 2018.
    doi:10.1109/LSP.2017.2766294

    21. Pal, P. and P. P. Vaidyanathan, "Nested arrays: A novel approach to array processing with enhanced degrees of freedom," IEEE Trans. Signal Process., Vol. 58, No. 8, 4167-4181, Aug. 2010.
    doi:10.1109/TSP.2010.2049264

    22. Liu, C. and P. P. Vaidyanathan, "Super nested arrays: Linear sparse arrays with reduced mutual coupling - Part I: Fundamentals," IEEE Trans. Signal Process., Vol. 64, No. 15, 3997-4012, Aug. 2016.
    doi:10.1109/TSP.2016.2558159

    23. Yang, M., L. Sun, X. Yuan, and B. Chen, "Improved nested array with hole-free DCA and more degrees of freedom," Electron. Lett., Vol. 52, No. 25, 2068-2070, 2016.
    doi:10.1049/el.2016.3197

    24. Moffet, A., "Minimum-redundancy linear arrays," IEEE Trans. Antennas Propag., Vol. 16, No. 2, 172-175, Mar. 1968.
    doi:10.1109/TAP.1968.1139138

    25. Hsu, K.-C. and J.-F. Kiang, "DOA estimation using triply primed arrays based on fourth-order statistics," Progress In Electromagnetics Research M, Vol. 67, 55-64, 2018.
    doi:10.2528/PIERM18012404

    26. Liu, S., J. Zhao, D. Wu, and H. Cao, "Grade nested array with increased degrees of freedom for quasi-stationary signals," Progress In Electromagnetics Research Letters, Vol. 80, 75-82, 2018.
    doi:10.2528/PIERL18100604

    27. BouDaher, E., F. Ahmad, M. G. Amin, and A. Hoorfar, "Mutual coupling effect and compensation in non-uniform arrays for direction-of-arrival estimation," Digit. Signal Process., Vol. 61, 3-14, Feb. 2017.
    doi:10.1016/j.dsp.2016.06.005

    28. Roberts, W., L. Xu, J. Li, and P. Stoica, "Sparse antenna array design for MIMO active sensing applications," IEEE Trans. Antennas Propag., Vol. 59, No. 3, 846-858, Mar. 2011.
    doi:10.1109/TAP.2010.2103550

    29. Chen, Z.-K., F.-G. Yan, X.-L. Qiao, and Y.-N. Zhao, "Sparse antenna array design for MIMO radar using multiobjective diffferential evolution," International Journal of Antennas and Propagation, Vol. 2016, Article ID 1747843, 12 pages, 2016.

    30. Ma, Y., C. Miao, Y. Zhao, and W. Wu, "An MIMO radar system based on the sparse-array and its frequency migration calibration method," Sensors, Vol. 19, No. 16, 3580, Jan. 2019.
    doi:10.3390/s19163580

    31. BouDaher, E., F. Ahmad, and M. G. Amin, "Sparsity-based direction finding of coherent and uncorrelated targets using active nonuniform arrays," IEEE Signal Process. Lett., Vol. 22, No. 10, 1628-1632, Oct. 2015.
    doi:10.1109/LSP.2015.2417807

    32. Liu, C. L. and P. P. Vaidyanathan, "Remarks on the spatial smoothing step in coarray MUSIC," IEEE Signal Process. Lett., Vol. 22, No. 9, 1438-1442, Sep. 2015.
    doi:10.1109/LSP.2015.2409153

    33. Zheng, W., X. Zhang, and J. Shi, "Sparse extension array geometry for DOA estimation with nested MIMO radar," IEEE Access, Vol. 5, 9580-9586, 2017.
    doi:10.1109/ACCESS.2017.2710212

    34. Trees, H. L. V., Detection, Estimation, and Modulation Theory, Optimum Array Processing, John Wiley & Sons, 2004.

    35. Patwari, A. and G. R. Reddy, "A conceptual framework for the use of minimum redundancy linear arrays and flexible arrays in future smartphones," International Journal of Antennas and Propagation, Vol. 2018, Article ID 9629837, 12 pages, 2018.

    36. Jang, C., F. Hu, F. He, J. Li, and D. Zhu, "Low-redundancy large linear arrays synthesis for aperture synthesis radiometers using particle swarm optimization," IEEE Trans. Antennas Propag., Vol. 64, No. 6, 2179-2188, Jun. 2016.
    doi:10.1109/TAP.2016.2543755

    37. Zhu, D., F. Hu, L. Lang, P. Tang, X. Peng, and F. He, "Double difference bases and thinned arrays with two fold redundancy," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 7366-7371, Dec. 2017.
    doi:10.1109/TAP.2017.2765738

    38. Yang, M., A. M. Haimovich, X. Yuan, L. Sun, and B. Chen, "A unified array geometry composed of multiple identical subarrays with hole-free di®erence coarrays for underdetermined DOA estimation," IEEE Access, Vol. 6, 14238-14254, 2018.
    doi:10.1109/ACCESS.2018.2813313