Vol. 86

Latest Volume
All Volumes
All Issues

H -Shaped Fractal Slots Based Highly Miniaturized Substrate Integrated Waveguide Metamaterial Bandpass Filters for C-Band Applications

By Ayad Muslim Hamzah, Lukman Audah, and Nasr Alkhafaji
Progress In Electromagnetics Research B, Vol. 86, 139-158, 2020


A new family of substrate integrated waveguide metamaterial bandpass filters is proposed which support the backward and forward wave propagations with two adjacent passbands under the cutoff frequency of the structure. Through varying the fractal slots sizes etched overthe SIW structures, different frequency transmission responses were realized. Extraction of the metamaterial parameters was achieved via scattering parameters. The equivalent circuit model was analyzed to provide comprehensionon the SIW-metamaterial unit cells. The equivalent electrical length of a fractal slot is larger than the conventional slot, making it suitable to design highly miniaturized filters. Three filters using the 3rd iteration H-shaped SIW-metamaterial unit cells were designed and testedusing subwavelength resonators. Filter designwas used to extract the coupling coefficient and external quality factor to obtain the filters' optimized physical dimensions. The out-of-band rejection can be enhanced by configuring the fractal slots or the SIW. A wide upper out-of-band rejection with attenuation >50 dB with the range 5.5 GHz to 9 GHz was realized. The proposed filters offer advantages through low insertion loss, easy fabrication, high selectivity, small size, and low cost. The measured scattering parameters S21 and S11 were in agreement with the simulated.


Ayad Muslim Hamzah, Lukman Audah, and Nasr Alkhafaji, "H -Shaped Fractal Slots Based Highly Miniaturized Substrate Integrated Waveguide Metamaterial Bandpass Filters for C-Band Applications," Progress In Electromagnetics Research B, Vol. 86, 139-158, 2020.


    1. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microw. Wirel. Components Lett., Vol. 11, No. 2, 68-70, 2001.

    2. Cassivi, Y., L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, "Dispersion characteristics of substrate integrated rectangular waveguide," IEEE Microw. Wirel. Components Lett., Vol. 12, No. 9, 333-335, 2002.

    3. Deslandes, D. and K. Wu, "Design consideration and performance analysis of substrate integrated waveguide components," 2002 32nd Eur. Microw. Conf. EuMC 2002, No. 2, 3-6, 2002.

    4. Musallam, M., et al., "Metabolic Syndrome and its components among Qatari population," Int. J. Food Safety, Nutr. Public Heal., Vol. 1, No. 1, 88-102, 2008.

    5. Dong, Y. D., T. Yang, and T. Itoh, "Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to miniaturized waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 1, 2211-2223, 2009.

    6. Veselago, V. G., "The electrodynamic of substances with simultaneous negative values of ε and μ," Sov. Phys. Uspekhi, Vol. 10, No. 4, 509-514, 1968.

    7. Gil, I., J. Bonache, J. Garcıa-Garcıa, F. Falcone, and F. Martın, "Metamaterials in microstrip technology for filter applications," IEEE Antennas Propag. Soc. AP-S Int. Symp., Vol. 1A, No. 1, 668-671, 2005.

    8. Navarro-Cia, M., M. Beruete, I. Campillo, and M. Sorolla, "Millimeter-wave left-handed extraordinary transmission metamaterial demultiplexer," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 212-215, 2009.

    9. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.

    10. Falcone, F., T. Lopetegi, J. D. Baena, R. Marques, F. Martın, and M. Sorolla, "Effective negative-ε stopband microstrip lines based on complementary split ring resonators," IEEE Microw. Wirel. Components Lett., Vol. 14, No. 6, 280-282, 2004.

    11. Marqus, R., F. Martn, and M. Sorolla, , Metamaterials with Negative Parameters, 2007.

    12. Caloz, C., , Electromagnetic Metamaterials Transmission Line Theory and Microwave Applications: The Engineering Approach, 2005.

    13. Martinez, J. A., J. J. De Dios, A. Belenguer, H. Esteban, and V. E. Boria, "Integration of a very high quality factor filter in empty substrate-integrated waveguide at Q-band," IEEE Microw. Wirel. Components Lett., Vol. 28, No. 6, 503-505, 2018.

    14. Moro, R., S. Moscato, M. Bozzi, and L. Perregrini, "Substrate integrated folded waveguide filter with out-of-band rejection controlled by resonant-mode suppression," IEEE Microw. Wirel. Components Lett., Vol. 25, No. 4, 214-216, 2015.

    15. Kumar, R. and S. N. Singh, "Design and analysis of ridge substrate integrated waveguide bandpass filter with octagonal complementary split ring resonator for suppression of higher order harmonics," Progress In Electromagnetics Research C, Vol. 89, 87-99, 2019.

    16. Hong, W., et al., "Half mode substrate integrated waveguide: A new guided wave structure for microwave and millimeter wave application," IRMMW-THz 2006 —31st Int. Conf. Infrared Millim. Waves 14th Int. Conf. Terahertz Electron., Vol. 152, 219, 2006.

    17. Structures, W. L., Y. Dong, S. Member, T. Itoh, and L. Fellow, "Composite right/left-handed substrate integrated waveguide and half mode substrate integrated," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 3, 767-775, 2011.

    18. Huang, X. L., L. Zhou, M. V¨olkel, A. Hagelauer, J. F. Mao, and R. Weigel, "Design of a novel quarter-mode substrate-integrated waveguide filter with multiple transmission zeros and higher mode suppressions," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 12, 5573-5584, 2018.

    19. Dong, Y. D. and T. Itoh, "Composite right/left-handed substrate integrated waveguide and half-mode substrate integrated waveguide," IEEE MTT-S Int. Microw. Symp. Dig., 49-52, 2009.

    20. Zhang, X. C., Z. Y. Yu, and J. Xu, "Novel band-pass Substrate Integrated Waveguide (SIW) filter based on Complementary Split ring Resonators (CSRRs)," Progress In Electromagnetics Research, Vol. 72, 39-46, 2007.

    21. Che, W., C. Li, K. Deng, and L. Yang, "A novel bandpass filter based on complementary split rings resonators and substrate integrated waveguide," Microw. Opt. Technol. Lett., Vol. 50, No. 3, 748-753, 2008.

    22. Cao, H., et al., "A CSRR-fed SIWcavity-backed fractal patch antenna for wireless energy harvesting and communication," Sensors (Switzerland), Vol. 15, No. 9, 21196-21203, 2015.

    23. Danaeian, M., K. Afrooz, and A. Hakimi, "Miniaturization of substrate integrated waveguide filters using novel compact metamaterial unit-cells based on SIR technique," AEU — Int. J. Electron. Commun., Vol. 84, 62-73, 2018.

    24. Dong, Y. and T. Itoh, "Miniaturized substrate integrated waveguide slot antennas based on negative order resonance," IEEE Trans. Antennas Propag., Vol. 58, No. 12, 3856-3864, 2010.

    25. Peano, G., "Sur une courbe, qui remplit toute une aire plane," Math. Ann., Vol. 36, No. 1, 157-160, 1890.

    26. Bao, X. L., G. Ruvio, M. J. Ammann, and M. John, "A novel GPS patch antenna on a fractal hi-impedance surface substrate," IEEE Antennas Wirel. Propag. Lett., Vol. 5, No. 1, 323-326, 2006.

    27. Romeu, J. and Y. Rahmat-Samii, "Fractal FSS: A novel dual-band frequency selective surface," IEEE Trans. Antennas Propag., Vol. 48, No. 7, 1097-1105, 2000.

    28. Murad, N. A., M. Esa, M. F. Mohd Yusoff, and S. H. Ammah Ali, "Hilbert curve fractal antenna for RFID application," 2006 Int. RF Microw. Conf. Proc., Vol. 00, 182-186, 2006.

    29. Palandoken, M. and H. Henke, "Fractal negative-epsilon metamaterial," Final Progr. B. Abstr. — iWAT 2010 2010 Int. Work. Antenna Technol. Small Antennas, Innov. Struct. Mater., No. 1, 2-5, 2010.

    30. Garcıa-Garcıa, J., J. Bonache, I. Gil, F. Martın, M. Del Castillo Velazquez-Ahumada, and J. Martel, "Miniaturized microstrip and CPW filters using coupled metamaterial resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2628-2634, 2006.

    31. Hong, J.-S. and M. J. Lancaster, , Vol. 7, Microstrip Filters for RF/Microwave Applications, 2001.

    32. Huang, L., I. D. Robertson, W. Wu, and N. Yuan, "Substrate integrated waveguide filters with broadside-coupled complementary split ring resonators," IET Microwaves, Antennas Propag., Vol. 7, No. 10, 795-801, 2013.

    33. Yan, T., X.-H. Tang, and Z.-X. Xu, "A novel type of bandpass filter using complementary open-ring resonator loaded HMSIW with an electric cross-coupling," Microw. Opt. Technol. Lett., Vol. 58, No. 4, 748-753, 2016.

    34. Silveira, D., et al., "Improvements and analysis of nonlinear parallel behavioral models," Int. J. RF Microw. Comput. Eng., Vol. 19, No. 5, 615-626, 2009.

    35. Wu, L. S., X. L. Zhou, W. Y. Yin, L. Zhou, and J. F. Mao, "A substrate-integrated evanescentmode waveguide filter with nonresonating node in low-temperature co-fired ceramic," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 10, 2654-2662, 2010.

    36. Danaeian, M., K. Afrooz, A. Hakimi, and A. R. Moznebi, "Compact bandpass filter based on SIW loaded by open complementary split-ring resonators," Int. J. RF Microw. Comput. Eng., Vol. 26, No. 8, 674-682, 2016.

    37. Danaeian, M., A. R. Moznebi, and K. Afrooz, "A novel super compact half-mode substrate-integrated waveguide filter using modified complementary split-ring resonator," Int. J. RF Microw. Comput. Eng., Vol. 29, No. 6, 1-8, 2019.

    38. Azad, A. R. and A. Mohan, "Sixteenth-mode substrate integrated waveguide bandpass filter loaded with complementary split-ring resonator," Microw. Opt. Technol. Lett., Vol. 53, No. 8, 546-547, 2017.