Vol. 95

Latest Volume
All Volumes
All Issues

Investigation of Plasmonic Metal Conductors and Dielectric Substrates on Nano-Antenna for Optical Wireless Communication

By Kavitha S, Kanduri Venkata Sairam, and Ashish Singh
Progress In Electromagnetics Research B, Vol. 95, 1-22, 2022


In this manuscript, plasmonic metal conductors such as Silver, Gold, Aluminum, Copper, Chromium, Tungsten, Titanium, and Nickel are investigated on a T-shaped nano dipole antenna using dielectric materials such as Silicon Dioxide, Zinc Oxide, Indium Tin Oxide, and Silicon Nitride. The optical properties of the conductors and dielectric materials are modeled using Drude and Lorentz dispersive models, respectively. It is observed that the Aluminium metal supports high quality plasmonic oscillations for a wide range of Terahertz frequencies. The Aluminium metal also shows high losses occurring at the Terahertz frequency among the other metals. The Gold and Silver can resonate in the visible region and have moderate losses compared to the other plasmonic metals. It is noticed that the near-zero permittivity point of the Silicon Dioxide substrate occurs at 2875 THz which is much greater than the other three substrates. Further, it is observed that on the Silicon Dioxide, Zinc Oxide, and Silicon Nitride substrates the Silver Nano dipole antenna shows the maximum directivity of 6.615 dBi, 5.671 dBi, and 5.709 dBi, respectively. The Aluminium nano-antenna gives the maximum directivity of 5.066 dBi on the Indium Tin Oxide substrate. The Silver-Silicon Dioxide Nano-antenna will be suitable for the terahertz optical wireless communication.


Kavitha S, Kanduri Venkata Sairam, and Ashish Singh, "Investigation of Plasmonic Metal Conductors and Dielectric Substrates on Nano-Antenna for Optical Wireless Communication," Progress In Electromagnetics Research B, Vol. 95, 1-22, 2022.


    1. Bharadwaj, P., B. Deutsch, and L. Novotny, "Optical antennas," J. Opt. Soc. Am. B, Vol. 24, No. 11, 3014-3022, 2007.

    2. Novotny, L. and N. F. van Hulst, "Antennas for light," Nature Photonics, Vol. 5, No. 2, 83-90, 2011.

    3. Alu, A. and N. Engheta, "Wireless at the nanoscale: Optical interconnects using matched nanoantennas," Physical Review Letters, Vol. 104, No. 21, 213902, 2010.

    4. Ma, Z. and G. A. E. Vandenbosch, "Systematic full-wave characterization of real-metal nano dipole antennas," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 10, 4990-4999, 2013.

    5. Polemi, A., A. Alu, and N. Engheta, "Nanocircuit loading of plasmonic waveguides," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4381-4390, 2012.

    6. Kosako, T., Y. Kadoya, and H. F. Hofmann, "Directional control of light by a nano-optical Yagi-Uda antenna," Nature Photon., Vol. 4, 312-315, 2010.

    7. Alu, A. and N. Engheta, "Theory, modeling and features of optical nanoantennas," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 1508-1517, 2013.

    8. Nafari, M. and J. M. Jornet, "Modeling and performance analysis of metallic plasmonic nano-antennas for wireless optical communication in nanonetworks," IEEE Access, Vol. 5, 6389-6398, 2017.

    9. Wang, L., M. H. Kafshgari, and M. Meunier, "Optical properties and applications of plasmonic-metal nanoparticles," J. Adv. Funct. Mater., Vol. 30, No. 51, 2005400, 2020.

    10. West, P. R., S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, "Searching for better plasmonic materials," J. Laser & Photon. Rev., Vol. 4, No. 6, 795-808, 2010.

    11. Gutierrez, Y., A. S. Brown, F. Moreno, and M. Losurdo, "Plasmonics beyond noble metals: Exploiting phase and compositional changes for manipulating plasmonic performance," J. Appl. Phys., Vol. 128, No. 8, 0801901, 2020.

    12. Losurdo, M., F. Moreno, C. Cobet, M. Modreanu, and W. Pernice, "Plasmonics: Enabling functionalities with novel materials," J. Appl. Phys., Vol. 129, No. 22, 220401, 2021.

    13. Morshed, M., Z. Li, B. C. Olbricht, L. Fu, A. Haque, L. Li, A. A. Rifat, M. Rahmani, A. E. Miroshnichenko, and H. T. Hattori, "High fluence chromium and tungsten bowtie nano-antennas," Sci. Rep., Vol. 9, No. 13023, 1-11, 2019.

    14. Mironov, E. G., Z. Li, H. T. Hattori, K. Vora, H. H. Tan, and C. Jagadish, "Titanium nano-antenna for high-power pulsed operation," IEEE Journal of Lightwave Technology, Vol. 31, No. 15, 2459-2466, 2013.

    15. Barchiesi, D. and T. Grosges, "Fitting the optical constants of gold, silver, chromium, titanium, and aluminum in the visible bandwidth," Journal of Nanophotonics, Vol. 8, 083097, 2014.

    16. Gerard, D. and S. K. Gray, "Aluminium plasmonics," Journal of Physics D: Applied Physics, Vol. 48, No. 18, 184001, 2015.

    17. Dash, A. P., "Impact of silicon-based substrates on graphene THz antenna," Physica E: Low-dimensional Systems and Nanostructures, Vol. 126, 1-24, 2021.

    18. Morshed, M., Md. A. Haque, and H. T. Hattori, "The effect of the substrate on the damage threshold of gold nano-antennas by a femtosecond laser," Materials Research Express, Vol. 7, No. 9, 096201, 2020.

    19. Nickelson, L., Electromagnetic Theory and Plasmonics for Engineers, 1st Ed., 611-695, Springer Singapore, 2019.

    20. Alabastri, A., S. Tuccio, A. Giugni, A. Toma, C. Liberale, G. Das, F. Angelis, E. D. Fabrizio, and R. P. Zaccaria, "Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature," Materials (Basel), Vol. 25, No. 6, 4879-4910, 2013.

    21. Philipp, H. R., "Optical properties of silicon nitride," Journal of the Electrochemical Society, Vol. 120, No. 2, 295, 1973.

    22. Oh, M., Study of Cu/SiO2/Cu Metamaterials: Design, Simulation, Fabrication, Testing, and Optical Applications, 2017.

    23. Taya, S. A., N. E. Al-Ashi, O. M. Ramahi, I. Colak, and I. S. Amiri, "Surface plasmon resonance-based optical sensor using a thin layer of plasma," J. Opt. Soc. Am. B, Vol. 38, No. 8, 2362-2367, 2021.

    24. Taya, S. A., N. Doghmosh, A. A. Alkanoo, V. Dhasarathan, N. R. Ramanujam, and I. Amiri, "Waveguides including negative permeability and simultaneously negative permittivity and permeability materials for sensing applications," Optik (Stuttgart), Vol. 228, 166147, 2021.

    25. Taya, S. A., N. Doghmosh, and Z. M. Nassar, "Refractometric sensor based on slab waveguides of simultaneously negative permittivity and permeability materials," J. Opt. Quant. Electron., Vol. 52, 519, 2020.

    26. Krishnamurthy, R., V. Revathy, K. S. J. Wilson, S. A. Taya, and I. S. Amiri, "Phonon polariton dispersion in metal-doped nanocomposite superlattice system," Journal of Optical Communications, 2019.