Vol. 95

Latest Volume
All Volumes
All Issues
2022-04-21

Miniaturized Dual-Band Embedded NZI Metasurface Antenna with Front-to-Back Radiation Ratio Enhancement

By Parul Dawar and Mahmoud Abdalla
Progress In Electromagnetics Research B, Vol. 95, 61-79, 2022
doi:10.2528/PIERB22020404

Abstract

In this paper, a novel miniaturized dual-band embedded near-zero index (NZI) metasurface-based patch antenna is presented. A new methodology based on loading a narrowband microstrip patch antenna (resonating at 4.6 GHz) by a metasurface embedded in the middle of the antenna's substrate is introduced. The loaded antenna has a dual-band resonance of bandwidth of 15% and 43% at 2 GHz and 4.6 GHz, respectively. The metasurface layer is an array of square holes such that there is no hole below the patch. The metasurface layer is designed as a near-zero-refractive-index material (NZRIM). By controlling the phase reflection properties of the structure, the antenna gain is increased by 5.5\,dB, original bandwidth increased ten times and the front-to-back ratio improved from 7 to 187. Also, footprint miniaturization of 56.5% with a maximum size of (1.9λ0)2 is obtained. To the best of the authors' knowledge, such enhancement is the largest to date.

Citation


Parul Dawar and Mahmoud Abdalla, "Miniaturized Dual-Band Embedded NZI Metasurface Antenna with Front-to-Back Radiation Ratio Enhancement," Progress In Electromagnetics Research B, Vol. 95, 61-79, 2022.
doi:10.2528/PIERB22020404
http://test.jpier.org/PIERB/pier.php?paper=22020404

References


    1. Wong, K. L., Compact and Broadband Microstrip Antennas, Wiley, New York, NY, USA, 2002.
    doi:10.1002/0471221112

    2. Lo, T. K., Y. Hwang, E. K. W. Lam, and B. Lee, "Miniature aperture-coupled microstrip antenna of very high permittivity," Electron. Lett., Vol. 33, 9-10, 1997.
    doi:10.1049/el:19970053

    3. Lee, B. and F. J. Harackiewicz, "Miniature microstrip antenna with a partially filled high-permittivity substrate," IEEE Trans. Antennas Propagat., Vol. 50, No. 8, 1160-1162, 2002.
    doi:10.1109/TAP.2002.801360

    4. Waterhouse, R., "Small microstrip patch antenna," Electron. Lett., Vol. 31, No. 8, 604-605, 1995.
    doi:10.1049/el:19950426

    5. Wong, K. L. and Y. F. Lin, "Small broadband rectangular microstrip patch antenna with chip-resistor loading," Electron. Lett., Vol. 33, No. 19, 1593-1594, 1997.
    doi:10.1049/el:19971111

    6. Ferrari, P., N. Corrao, and D. Rauly, "Miniaturized circular patch antenna with capacitors loading," SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, 86-89, Brazil, 2007.

    7. Wong, K. L., C. L. Tang, and H. T. Chen, "A compact meandered circular microstrip antenna with a shorting pin," Microwave Opt. Technol. Lett., Vol. 15, 147-149, 1997.
    doi:10.1002/(SICI)1098-2760(19970620)15:3<147::AID-MOP8>3.0.CO;2-G

    8. Nasimuddin, X. Q. and Z. N. Chen, "A compact circularly polarized slotted patch antenna for GNSS applications," IEEE Trans. Antennas Propagat., Vol. 62, No. 12, 6506-6509, 2014.
    doi:10.1109/TAP.2014.2360218

    9. Dong, Y. D., H. Toyao, and T. Itoh, "Compact circularly-polarized patch antenna loaded with metamaterial structures," IEEE Trans. Antennas Propagat., Vol. 59, 4329-4333, 2011.
    doi:10.1109/TAP.2011.2164223

    10. Kumar, G. and K. Gupta, "Nonradiating edges and four edges gap-coupled multiple resonator broad-band microstrip antennas," IEEE Antennas Propag. Mag., 127-135, 2015.

    11. Yang, M., Z. N. Chen, P. Y. Lau, X. Qing, and X. Yinl, "Miniaturized patch antenna with grounded strips," IEEE Trans. Antennas Propagat., Vol. 63, No. 2, 2015.
    doi:10.1109/TAP.2014.2382668

    12. Pozar, D. M., "Microstrip antennas," Proceedings of the IEEE, Vol. 80, No. 1, 79-91, 1992.
    doi:10.1109/5.119568

    13. Long, S. and M. Walton, "A dual-frequency stacked circular-disc antenna," IEEE Trans. Antennas Propagat., Vol. 27, No. 2, 1979.
    doi:10.1109/TAP.1979.1142078

    14. Sullivan, P. and D. Schaubert, "Analysis of an aperture coupled microstrip antenna," IEEE Trans. Antennas Propagat., Vol. 34, No. 8, 1986.
    doi:10.1109/TAP.1986.1143929

    15. Maci, S., G. Biffi Gentili, P. Piazzesi, and C. Salvador, "Dual-band slot-loaded patch antenna," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 142, No. 3, 225-232, 1995.
    doi:10.1049/ip-map:19951932

    16. Mohamad, S., R. Cahill, and V. Fusco, "Performance of Archimedean spiral antenna backed by FSS reflector," Electron. Lett., Vol. 51, No. 1, 14-16, 2014.
    doi:10.1049/el.2014.3693

    17. Gonzalo, R., P. De Maagt, and M. Sorolla, "Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2131-2138, 1999.
    doi:10.1109/22.798009

    18. Trentini, G. V., "Partially reflecting sheet arrays," IRE Trans. Antennas Propag., Vol. 4, No. 4, 666-671, 1956.
    doi:10.1109/TAP.1956.1144455

    19. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O'Hara, J. Booth, and D. R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas Propag. Mag., Vol. 54, No. 2, 10-35, 2012.
    doi:10.1109/MAP.2012.6230714

    20. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Compact all-textile dual-band antenna loaded with metamaterial inspired structure," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1486-1489, 2014.

    21. Sharma, S., M. Abdalla, and Z. Hu, "Miniaturization of an electrically small metamaterial inspired antenna using additional conducting layer," IET Microw. Antennas Propag., Vol. 12, No. 8, 1444-1449, 2018.
    doi:10.1049/iet-map.2017.0927

    22. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Low-profile dual-band textile antenna with artificial magnetic conductor plane," IEEE Trans. Antennas Propagat., Vol. 62, No. 12, 6487-6490, 2014.
    doi:10.1109/TAP.2014.2359194

    23. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Wearable dual-band magneto-electric dipole antenna for WBAN/WLAN applications," IEEE Trans. Antennas Propagat., Vol. 63, No. 9, 4165-4169, 2015.
    doi:10.1109/TAP.2015.2443863

    24. Lubkowski, G., C. Damm, B. Bandlow, R. Schuhmann, M. Schβler, and T. Weiland, "Metamaterial loaded waveguides for miniaturized filter applications," Frequenz, Vol. 62, 3-4, 2018.

    25. Jia, Y., Y. Liu, W. Zhang, J. Wang, S. Gong, and G. Liao, "High-gain Fabry-Perot antennas with wideband low monostatic RCS using phase gradient metasurface," IEEE Access, Vol. 7, 4816-4824, 2019.
    doi:10.1109/ACCESS.2018.2886832

    26. Jiang, H., Z. Xue, M. Leng, W. Li, and W. Ren, "Wideband partially reflecting surface antenna with broadband RCS reduction," IET Microw., Antennas Propag., Vol. 12, No. 6, 94194, 2018.
    doi:10.1049/iet-map.2017.0630

    27. Mu, J., H. Wang, H. Wang, and Y. Huang, "Low-RCS and gain enhancement design of a novel partially reflecting and absorbing surface antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1903-1906, 2017.
    doi:10.1109/LAWP.2017.2685623

    28. Zheng, Y., J. Gao, Y. Zhou, X. Cao, H. Yang, S. Li, and T. Li, "Wideband gain enhancement and RCS reduction of Fabry-Perot resonator antenna with chessboard arranged metamaterial superstrate," IEEE Trans. Antennas Propagat., Vol. 66, No. 2, 590-599, Feb. 2018.
    doi:10.1109/TAP.2017.2780896

    29. Singh, A. K., M. P. Abegaonkar, and S. K. Koul, "High-gain and high-aperture-efficiency cavity resonator antenna using metamaterial superstrate," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2388-2391, 2017.
    doi:10.1109/LAWP.2017.2719864

    30. Dawar, P. and M. A. Abdalla, "Near-zero-refractive-index metasurface antenna with bandwidth, directivity and front-to-back radiation ratio enhancement," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 14, 1863-1881, 2021.
    doi:10.1080/09205071.2021.1923069

    31. Deng, F. and J. Qi, "Shrinking profile of Fabry-Perot cavity antennas with stratified metasurfaces: Accurate equivalent circuit design and broadband high-gain performance," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 208-212, 2020.

    32. Pham, D. A., E. Park, H. L. Lee, and S. Lim, "High gain and wideband metasurfaced magneto-electric antenna for WiGig applications," IEEE Trans. Antennas Propagat., Vol. 69, No. 2, 1140-1145, 2021.

    33. Marcuvitz, N., Waveguide Handbook, Vol. 21, Peter Peregrinus Ltd., New York, 1986.

    34. Langley, R. J. and E. A. Parker, "Equivalent circuit model for arrays of square loops," Electron. Lett., Vol. 18, No. 7, 294-296, 1982.

    35. Lee, C. K. and R. J. Langley, "Equivalent-circuit models for frequency selective surfaces at oblique angles of incidence," IEE Proceedings --- H, Microwaves Optics and Antennas, Vol. 132, 395-399, 1985.

    36. Saraswat, R. K. and M. Kumar, "A metamaterial loaded hybrid fractal multiband antenna for wireless applications with frequency band reconfigurability characteristics," Frequenz, Vol. 74, No. 11-12, Sept. 2020.

    37. Reed, J. A., Frequency selective surfaces with multiple periodic elements, Ph.D. Thesis, University of Texas Dallas, USA, 1997.

    38. Liu, A., S. Lei, X. Shi, and L. Li, "Study of antenna superstrates using metamaterials for directivity enhancement based on Fabry-Perot resonant cavity," International Journal of Antennas and Propagation, Vol. 2013, 1-10, 2013.

    39. Peng, X., G. Wang, H. Li, and X. Gao, "A novel methodology for gain enhancement of the Fabry-Perot antenna," IEEE Access, Vol. 7, 176170-176176, 2019.

    40. Uddin, M. J., M. H. Ullah, T. A. Latef, W. N. Mahadi, and M. T. Islam, "Making meta better: The synthesis of new-shaped periodic artificial structures suitable for metamaterial behavior characterization," IEEE Microw. Mag., Vol. 8, No. 17, 52-58, 2016.

    41. Karlsson, A., "Approximate boundary conditions for thin structures," IEEE Trans. Antennas Propagat., Vol. 57, No. 1, 144-148, 2009.

    42. Van Labeke, D., D. Gerard, B. Guizal, F. I. Baida, and L. Li, "An angle-independent frequency selective surface in the optical range," Optics Express, Vol. 14, No. 25, 11945-11951, 2006.

    43. Liu, Y., S. Xia, H. Shi, A. Zhang, and Z. Xu, "Dual-band and high-efficiency polarization converter based on metasurfaces at microwave frequencies," Appl. Phys. B, Vol. 122, 178, 2016.

    44. Mustafa, M. E., F. A. Tahir, and M. Amin, "Broadband waveplate operation by orthotropic metasurface refector," J. Appl. Phys., Vol. 126, 2019.

    45. Li, J., et al., "Dual-band transmissive cross-polarization converter with extremely high polarization conversion ratio using transmitarray," Materials, Vol. 12, No. 1827, 2019.

    46. Cao, H., et al., "Dual-band polarization conversion based on non-twisted Q-shaped metasurface," Opt. Comm., Vol. 370, 311-318, 2016.

    47. Khan, M. I., Q. Fraz, and F. A. Tahir, "Ultra-wideband cross polarization conversion metasurface insensitive to incidence angle," J. Appl. Phys., Vol. 121, 045103, 2017.