Vol. 100

Latest Volume
All Volumes
All Issues
2023-06-24

Wideband and Compact Regular Shape Microstrip Antennas Employing Rectangular Slots Cut Bow-Tie Shape Ground Plane

By Amit A. Deshmukh, Abhijay Rane, Suraj Surendran, Yugantar Bhasin, and Venkata A. P. Chavali
Progress In Electromagnetics Research B, Vol. 100, 155-172, 2023
doi:10.2528/PIERB23042602

Abstract

Wide bandwidth compact rectangular and equilateral triangular microstrip antennas employing slots cut bow-tie shape ground plane profile are proposed. Amongst all the designs, patch employing three rectangular slots cut bow-tie shape ground plane yields optimum results. Using the rectangular patch, against conventional ground plane design, increase in bandwidth by 20%, resonance frequency, substrate thickness, and patch area reduction by 32%, 0.034λg, and 61.12%, are respectively achieved. In equilateral triangular patch design, a three rectangular slots cut bow-tie shape ground plane configuration shows bandwidth increase by 30%, and substrate thickness, fundamental mode frequency, and patch size reduction by 0.027λg, 16.4%, and 36.28%, respectively. Proposed designs exhibit broadside radiation pattern with broadside gain of above 5 dBi.

Citation


Amit A. Deshmukh, Abhijay Rane, Suraj Surendran, Yugantar Bhasin, and Venkata A. P. Chavali, "Wideband and Compact Regular Shape Microstrip Antennas Employing Rectangular Slots Cut Bow-Tie Shape Ground Plane," Progress In Electromagnetics Research B, Vol. 100, 155-172, 2023.
doi:10.2528/PIERB23042602
http://test.jpier.org/PIERB/pier.php?paper=23042602

References


    1. Garg, R., P. Bhartia, and I. Bahl, Microstrip Antenna Design Handbook, Artech House, London, 2001.

    2. Bahl, I. J. and P. Bhartia, Microstrip Antennas, Artech House, USA, 1980.

    3. Deshmukh, A. A. and G. Kumar, "Compact broadband gap-coupled shorted square microstrip antennas," Microwave and Optical Technology Letters, Vol. 48, No. 7, 1261-1265, Jul. 2006.
    doi:10.1002/mop.21671

    4. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, London, 2003.

    5. Wong, K. L., Compact and Broadband Microstrip Antennas, John Wiley and Sons, New York, 2002.
    doi:10.1002/0471221112

    6. Huynh, T. and K. F. Lee, "Single-layer single-patch wideband microstrip antenna," Electronics Letters, Vol. 31, No. 16, 1310-1312, Aug. 1995.
    doi:10.1049/el:19950950

    7. Wong, K. L. and W. H. Hsu, "A broadband rectangular patch antenna with pair of wide slits," IEEE Transaction on Antennas and Propagation, Vol. 49, No. 9, 1345-1347, Sep. 2001.
    doi:10.1109/8.951507

    8. S. K., L. Shafai, "Sharma," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 468-471, 2009.

    9. Yoo, J. U. and H. W. Son, "A simple compact wideband microstrip antenna consisting of three staggered patches," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2038-2042, 2020.
    doi:10.1109/LAWP.2020.3021491

    10. Lu, H. X., F. Liu, M. Su, and Y. A. Liu, "Design and analysis of wideband U-slot patch antenna with U-shaped parasitic elements," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 2, e21202, 2018.
    doi:10.1002/mmce.21202

    11. Li, W. W., Q. H. Li, Y. Meng, J. Y. Wang, and W. M. Xu, "A broadband microstrip patch antenna with multiple open slots," Microwave and Optical Technology Letters, Vol. 61, No. 3, 626-632, 2019.
    doi:10.1002/mop.31646

    12. Chen, Y., S. Yang, and Z. Nie, "Bandwidth enhancement method for low profile E-shaped microstrip patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2442-2447, 2010.
    doi:10.1109/TAP.2010.2048850

    13. Radavaram, S. and M. Pour, "Wideband radiation reconfigurable microstrip patch antenna loaded with two inverted U-slots," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1501-1508, 2018.
    doi:10.1109/TAP.2018.2885433

    14. Cao, Y., Y. Cai, W. Cao, B. Xi, Z. Qian, T. Wu, and L. Zhu, "Broadband and high-gain microstrip patch antenna loaded with parasitic Mushroom-type structure," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1405-1409, 2019.
    doi:10.1109/LAWP.2019.2917909

    15. Wen, J., D. Xie, and L. Zhu, "Bandwidth enhanced high-gain microstrip patch antenna under TM30 and TM50 dual-mode resonances," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1976-1980, 2019.
    doi:10.1109/LAWP.2019.2935679

    16. Kahani, K., M. Saikia, R. K. Jaiswal, S. Malik, and V. S. Kumar, "A compact, low-profile shorted TM1/2,0 mode planar copolarized microstrip antenna for full-duplex systems," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 9, 1887-1891, Sep. 2022.
    doi:10.1109/LAWP.2022.3184163

    17. Liu, S., Z. Wang, W. Sun, and Y. Dong, "A compact wideband pattern diversity antenna for 5GNR applications," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 9, 1787-1791, Sep. 2022.
    doi:10.1109/LAWP.2022.3179845

    18. Chen, F., C. Feng, W. Chu, Y. Yue, X. Zhu, and W. Gu, "Design of a broadband high-gain omnidirectional antenna with low cross polarization based on characteristic mode theory," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 9, 1747-1751, Sep. 2022.
    doi:10.1109/LAWP.2022.3179270

    19. Balaji, U., "Bandwidth enhanced circular and annular ring sectoral patch antennas," Progress In Electromagnetics Research Letters, Vol. 84, 67-73, 2019.
    doi:10.2528/PIERL19030507

    20. Mondal, K. and P. P. Sarkar, "M-shaped broadband microstrip patch antenna with modified ground plane," Microwave and Optical Technology Letters, Vol. 57, No. 6, 1308-1312, Jun. 2015.
    doi:10.1002/mop.29068

    21. Baudha, S. and M. V. Yadav, "A novel design of a planar antenna with modified patch and defective ground plane for ultra-wideband applications," Microwave and Optical Technology Letters, Vol. 61, No. 5, 1320-1327, May 2019.
    doi:10.1002/mop.31716

    22. Hota, S., S. Baudha, B. B.Mangaraj, and M. V. Yadav, "A compact, ultrawide band planar antenna with modified circular patch and a defective ground plane for multiple applications," Microwave and Optical Technology Letters, Vol. 61, No. 9, 2088-2097, Sep. 2019.
    doi:10.1002/mop.31867

    23. Mandal, K. and P. P. Sarkar, "High gain wide-band U-shaped patch antennas with modified ground planes," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 2279-2282, Jan. 2013.
    doi:10.1109/TAP.2012.2233455

    24. Kadam, P. A. and A. A. Deshmukh, "Variations of compact rectangular microstrip antennas using defected ground plane structure: Compact rectangular microstrip antennas," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 21, No. 2, 265-283, Jun. 2022.
    doi:10.1590/2179-10742022v21i2256950

    25., , IE3D Version 12, Zeland Software.

    26. Chavali, V. A. P. and A. A. Deshmukh, "Wideband designs of regular shape microstrip antennas using modified ground plane," Progress In Electromagnetics Research C, Vol. 117, 203-219, 2022.

    27. Deshmukh, A. A., A. G. Ambekar, and V. A. P. Chavali, "Wideband designs of U-slot cut square microstrip antenna using modified ground plane profile," Progress In Electromagnetics Research C, Vol. 130, 1-14, 2023.
    doi:10.2528/PIERC23010503

    28. Deshmukh, A. A., V. A. P. Chavali, and A. G. Ambekar, "Thinner substrate designs of modified ground plane E-shape microstrip antennas for wideband response," Electromagnetics, Vol. 22, No. 4, 255-265, 2022.
    doi:10.1080/02726343.2022.2099341