Vol. 103

Latest Volume
All Volumes
All Issues
2023-09-21

3-D Electrical Impedance Imaging of Lung Injury

By Ming Ma, Zepeng Hao, Qi Wang, Xiuyan Li, Xiaojie Duan, Jianming Wang, and Hui Feng
Progress In Electromagnetics Research B, Vol. 103, 19-36, 2023
doi:10.2528/PIERB23060601

Abstract

Pulmonary edema assessment is a key factor in monitoring and guiding the treatment of critically ill patients. To date, the methods available at the bedside to estimate the physiological correlation of pulmonary edema and extravascular pulmonary fluid are often unreliable or require invasive measurements. The aim of this article is to develop an imaging method of reliably assessing pulmonary edema by utilizing functional electrical impedance tomography. In this article, the Split-Bregman algorithm is used to solve the Total Variation (TV) minimization problem in EIT image reconstruction. A thorax model is constructed according to CT images of rats. Through simulation and experiment, the proposed method improves the quality of reconstructed image significantly compared with existing methods. A pulmonary edema experiment in rats is also carried out. The development of pulmonary edema is analyzed numerically through EIT images.

Citation


Ming Ma, Zepeng Hao, Qi Wang, Xiuyan Li, Xiaojie Duan, Jianming Wang, and Hui Feng, "3-D Electrical Impedance Imaging of Lung Injury," Progress In Electromagnetics Research B, Vol. 103, 19-36, 2023.
doi:10.2528/PIERB23060601
http://test.jpier.org/PIERB/pier.php?paper=23060601

References


    1. Murray, J. F., "Pulmonary edema: Pathophysiology and diagnosis," International Journal of Tuberculosis and Lung Disease, Vol. 15, No. 2, 155-160, 2011.

    2. Schwaiberger, D., et al., "Closed-loop mechanical ventilation for lung injury: A novel physiological-feedback mode following the principles of the open lung concept," Journal of Clinical Monitoring and Computing, Vol. 32, No. 3, 493-502, 2018.
    doi:10.1007/s10877-017-0040-0

    3. Bodenstein, M., M. David, and K. Markstaller, "Principles of electrical impedance tomography and its clinical application," Critical Care Medicine, Vol. 37, No. 2, 713-724, 2009.
    doi:10.1097/CCM.0b013e3181958d2f

    4. Tingay, D. G., et al., "Surfactant before the first inflation at birth improves spatial distribution of ventilation and reduces lung injury in preterm lambs," Journal of Applied Physiology, Vol. 116, No. 3, 251-258, 2014.
    doi:10.1152/japplphysiol.01142.2013

    5. Herrero, R., G. Sanchez, J. A. Lorente, and , "New insights into the mechanisms of pulmonary edema in acute lung injury," Annals of Translational Medicine, Vol. 6, No. 2, 32, 2018.
    doi:10.21037/atm.2017.12.18

    6. Park, S., R. Farah, S. M. Shea, E. Tryggestad, R. Hales, and J. Lee, "Simultaneous tumor and surrogate motion tracking with dynamic MRI for radiation therapy planning," Physics in Medicine and Biology, Vol. 63, No. 2, 025015, 2018.
    doi:10.1088/1361-6560/aaa20b

    7. Balachandran, R., D. Schurzig, J. M. Fitzpatrick, and R. F. Labadie, "Evaluation of portable CT scanners for otologic image-guided surgery," International Journal of Computer Assisted Radiology and Surgery, Vol. 7, No. 2, 315-321, 2012.
    doi:10.1007/s11548-011-0639-4

    8. Schullcke, B., S. Krueger-Ziolek, B. Gong, R. A. Jorres, U. Mueller-Lisse, and K. Moeller, "Ventilation inhomogeneity in obstructive lung diseases measured by electrical impedance tomography: A simulation study," Journal of Clinical Monitoring and Computing, Vol. 32, No. 4, 753-761, 2018.
    doi:10.1007/s10877-017-0069-0

    9. Crabb, M. G., et al., "Mutual information as a measure of image quality for 3D dynamic lung imaging with EIT," Physiological Measurement, Vol. 35, No. 5, 863-879, 2014.
    doi:10.1088/0967-3334/35/5/863

    10. Fan, W. and H. X. Wang, "3D modelling of the human thorax for ventilation distribution measured through electrical impedance tomography," Measurement Science and Technology, Vol. 21, No. 11, 115801-1-115801-8, 2010.
    doi:10.1088/0957-0233/21/11/115801

    11. Frerichs, I., "Electrical impedance tomography (EIT) in applications related to lung and ventilation: A review of experimental and clinical activities," Physiological Measurement, Vol. 21, No. 2, R1-R21, 2000.
    doi:10.1088/0967-3334/21/2/201

    12. Adler, A., et al., "Whither lung EIT: Where are we, where do we want to go and what do we need to get there?," Physiological Measurement, Vol. 33, No. 5, 679-694, 2012.
    doi:10.1088/0967-3334/33/5/679

    13. Javaherian, A., M. Soleimani, and K. Moeller, "A fast time-difference inverse solver for 3D EIT with application to lung imaging," Medical & Biological Engineering & Computing, Vol. 54, No. 8, 1243-1255, 2016.
    doi:10.1007/s11517-015-1441-1

    14. Martin, S. and C. T. M. Choi, "A post-processing method for three-dimensional electrical impedance tomography," Scientific Reports, Vol. 7, 7212, 2017.
    doi:10.1038/s41598-017-07727-2

    15. Dimas, C., N. Uzunoglu, and P. P. Sotiriadis, "An efficient point-matching method-of-moments for 2D and 3D electrical impedance tomography using radial basis functions," IEEE Transactions on Biomedical Engineering, Vol. 69, No. 2, 783-794, 2022.
    doi:10.1109/TBME.2021.3105056

    16. Sun, B. Y., S. H. Yue, Z. H. Hao, Z. Q. Cui, and H. X. Wang, "An improved Tikhonov regularization method for lung cancer monitoring using electrical impedance tomography," IEEE Sensors Journal, Vol. 19, No. 8, 3049-3057, 2019.
    doi:10.1109/JSEN.2019.2892179

    17. Tawil, D. S., D. Rye, and M. Velonaki, "Improved image reconstruction for an EIT-based sensitive skin with multiple internal electrodes," IEEE Transactions on Robotics, Vol. 27, No. 3, 425-435, 2011.
    doi:10.1109/TRO.2011.2125310

    18. Gong, B., B. Schullcke, S. Krueger-Ziolek, F. Zhang, U. Mueller-Lisse, and K. Moeller, "Higher order total variation regularization for EIT reconstruction," Medical & Biological Engineering & Computing, Vol. 56, No. 8, 1367-1378, 2018.
    doi:10.1007/s11517-017-1782-z

    19. Borsic, A. and A. Adler, "A primal-dual interior-point framework for using the L1 or L2 norm on the data and regularization terms of inverse problems," Inverse Problems, Vol. 28, No. 9, 095011, 2012.
    doi:10.1088/0266-5611/28/9/095011

    20. Brito-Loeza, C., R. Legarda-Saenz, and A. Martin-Gonzalez, "A fast algorithm for a total variation based phase demodulation model," Numerical Methods for Partial Differential Equations, Vol. 36, No. 3, 617-636, 2020.
    doi:10.1002/num.22444

    21. Strauss, T. and T. Khan, "Statistical inversion in electrical impedance tomography using mixed total variation and non-convex l(p) regularization prior," Journal of Inverse and Ill-Posed Problems, Vol. 23, No. 5, 529-542, 2015.
    doi:10.1515/jiip-2013-0064

    22. Gonzalez, G., V. Kolehmainen, and A. Seppanen, "Isotropic and anisotropic total variation regularization in electrical impedance tomography," Computers & Mathematics with Applications, Vol. 74, No. 3, 564-576, 2017.
    doi:10.1016/j.camwa.2017.05.004

    23. Tehrani, J. N., A. McEwan, C. Jin, and A. van Schaik, "L1 regularization method in electrical impedance tomography by using the L1-curve (Pareto frontier curve)," Applied Mathematical Modelling, Vol. 36, No. 3, 1095-1105, 2012.
    doi:10.1016/j.apm.2011.07.055

    24. Wu, C. Y., Z. H. Wei, H. Bi, B. C. Zhang, Y. Lin, and W. Hong, "InSAR imaging based on L1 regularisation joint reconstruction via complex approximated message passing," Electronics Letters, Vol. 54, No. 4, 237-239, 2018.
    doi:10.1049/el.2017.3906

    25. Mamatjan, Y., A. Borsic, D. Gursoy, and A. Adler, "An experimental clinical evaluation of EIT imaging with l(1) data and image norms," Physiological Measurement, Vol. 34, No. 9, 1027-1039, 2013.
    doi:10.1088/0967-3334/34/9/1027

    26. Liu, J. Z., L. Lin, W. B. Zhang, and G. Li, "A novel combined regularization algorithm of total variation and Tikhonov regularization for open electrical impedance tomography," Physiological Measurement, Vol. 34, No. 7, 823-838, 2013.
    doi:10.1088/0967-3334/34/7/823

    27. Borsic, A., B. M. Graham, A. Adler, and W. R. B. Lionheart, "In vivo impedance imaging with total variation regularization," IEEE Transactions on Medical Imaging, Vol. 29, No. 1, 44-54, 2010.
    doi:10.1109/TMI.2009.2022540

    28. De Munck, J. C., T. J. C. Faes, and R. M. Heethaar, "The boundary element method in the forward and inverse problem of electrical impedance tomography," IEEE Transactions on Biomedical Engineering, Vol. 47, No. 6, 792-800, 2000.
    doi:10.1109/10.844230

    29. Abascal, J., et al., "Fluorescence diffuse optical tomography using the split Bregman method," Medical Physics, Vol. 38, No. 11, 6275-6284, 2011.
    doi:10.1118/1.3656063

    30. Yang, J. F., Y. Zhang, and W. T. Yin, "A fast alternating direction method for TVL1-L2 signal reconstruction from partial fourier data," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 2, 288-297, 2010.
    doi:10.1109/JSTSP.2010.2042333

    31. Yang, J. F. and Y. Zhang, "Alternating direction algorithms for l(1)-problems in compressive sensing," SIAM Journal on Scientific Computing, Vol. 33, No. 1, 250-278, 2011.
    doi:10.1137/090777761

    32. Xu, W. H., Y. N. Xie, X. Zhang, and W. Li, "Cerebral angiography under artificial intelligence algorithm in the design of nursing cooperation plan for intracranial aneurysm patients in craniotomy clipping," Computational and Mathematical Methods in Medicine, 2182931, 2022.

    33. Wang, Q., et al., "Exploring respiratory motion tracking through electrical impedance tomography," IEEE Transactions on Instrumentation and Measurement, Vol. 70, 1-12, 2021.

    34. Gao, X. W., P. Y. Qian, D. Cen, W. J. Hong, Q. Peng, and M. Xue, "Synthesis of phosphatidylcholine in rats with oleic acid-induced pulmonary edema and effect of exogenous pulmonary surfactant on its De Novo synthesis," Plos One, Vol. 13, No. 3, 1-13, 2018.

    35. Gomez-Laberge, C., J. H. Arnold, and G. K. Wolf, "A unified approach for EIT imaging of regional overdistension and atelectasis in acute lung injury," IEEE Transactions on Medical Imaging, Vol. 31, No. 3, 834-842, 2012.
    doi:10.1109/TMI.2012.2183641

    36. Li, X. Y., et al., "Electrical-impedance-tomography imaging based on a new three-dimensional thorax model for assessing the extent of lung injury," Aip Advances, Vol. 9, No. 12, 125310, 2019.
    doi:10.1063/1.5124353

    37. Trepte, C. J. C., et al., "Electrical impedance tomography (EIT) for quantification of pulmonary edema in acute lung injury," Critical Care, Vol. 20, 18, 2016.
    doi:10.1186/s13054-015-1173-5

    38. Riera, J., P. J. Riu, P. Casan, and J. R. Masclans, "Electrical impedance tomography in acute lung injury," Medicina Intensiva, Vol. 35, No. 8, 509-517, 2011.
    doi:10.1016/j.medin.2011.05.005

    39. Hagawane, T. N., R. V. Gaikwad, and N. A. Kshirsagar, "Dual hit lipopolysaccharide & oleic acid combination induced rat model of acute lung injury/acute respiratory distress syndrome," Indian Journal of Medical Research, Vol. 143, 624-632, 2016.
    doi:10.4103/0971-5916.187111

    40. Wang, Q., et al., "Error-constraint deep learning scheme for electrical impedance tomography (EIT)," IEEE Transactions on Instrumentation and Measurement, Vol. 71, 1-11, 2022.

    41. Quintel, M., et al., "An increase of abdominal pressure increases pulmonary edema in oleic acid-induced lung injury," American Journal of Respiratory and Critical Care Medicine, Vol. 169, No. 4, 534-541, 2004.
    doi:10.1164/rccm.200209-1060OC