Vol. 102

Latest Volume
All Volumes
All Issues
2023-08-23

Generalized Approach to Antenna Reconfigurability by Switching Load Admittances

By Serafin B. Fischer-Kennedy and Jan Hesselbarth
Progress In Electromagnetics Research B, Vol. 102, 151-169, 2023
doi:10.2528/PIERB23071004

Abstract

A general theory of a passive multi-port system is presented, incorporating an arbitrary number of feed and load ports. The result is a nonlinear equation system, in which the solution variables are the load admittances, connected to the load ports. The solution ensures impedance match at all feed ports at one particular frequency. It is also shown how this theory can be applied to adaptive and reconfigurable antennas, by using switches to include or exclude some of the load admittances. If, by open state of a switch, the corresponding load admittance is excluded, then the nonlinear equation system is simplified. In general, one load admittance per feed port is required to obtain complex conjugate impedance match. Then, the admittance has a real and an imaginary part, where the real part relates to a resistor, adding loss to the system. It is shown how loss-less matching can be obtained by using two, purely reactive admittances per feed port.

Citation


Serafin B. Fischer-Kennedy and Jan Hesselbarth, "Generalized Approach to Antenna Reconfigurability by Switching Load Admittances," Progress In Electromagnetics Research B, Vol. 102, 151-169, 2023.
doi:10.2528/PIERB23071004
http://test.jpier.org/PIERB/pier.php?paper=23071004

References


    1. Bahl, I., P. Bhartia, and S. Stuchly, "Design of microstrip antennas covered with a dielectric layer," IEEE Trans. Antennas Propag., Vol. 30, No. 2, 314-318, Mar. 1982.
    doi:10.1109/TAP.1982.1142766

    2. Shavit, R., "Dielectric cover effect on rectangular microstrip antenna array," IEEE Trans. Antennas Propag., Vol. 42, No. 8, 1180-1184, Aug. 1994.
    doi:10.1109/8.310012

    3. Rano, D., M. A. Chaudray, and M. S. Hashmi, "New model to determine effective permittivity and resonant frequency of patch antenna covered with multiple dielectric layers," IEEE Access, Vol. 8, 34418-34430, 2020.
    doi:10.1109/ACCESS.2020.2974912

    4. Soares, A., S. Fonseca, and A. Giarola, "The effect of a dielectric cover on the current distribution and input impedance of printed dipoles," IEEE Trans. Antennas Propag., Vol. 32, No. 11, 1149-1153, Nov. 1984.
    doi:10.1109/TAP.1984.1143241

    5. Bailey, M. and C. Swift, "Input admittance of a circular waveguide aperture covered by a dielectric slab," IEEE Trans. Antennas Propag., Vol. 16, No. 4, 386-391, Jul. 1968.
    doi:10.1109/TAP.1968.1139207

    6. Bailey, M., "Input admittance of a circular waveguide aperture covered by a dielectric slab," IEEE Trans. Antennas Propag., Vol. 18, No. 5, 596-603, Sep. 1970.
    doi:10.1109/TAP.1970.1139761

    7. Behera, S. K. and N. C. Karmakar, "Wearable chipless radio-frequency identification tags for biomedical applications: A review [antenna applications corner]," IEEE Antennas and Prop. Mag., Vol. 62, No. 3, 94-104, Jun. 2020.
    doi:10.1109/MAP.2020.2983978

    8. Griffin, J. D., G. D. Durgin, A. Haldi, and B. Kippelen, "RF tag antenna performance on various materials using radio link budgets," IEEE Antennas Wireless Propag. Lett., Vol. 5, 247-250, 2006.
    doi:10.1109/LAWP.2006.874072

    9. Ivsic, B., G. Golemac, and D. Bonefacic, "Performance of wearable antenna exposed to adverse environmental conditions," ICECom 2013, 1-4, 2013.

    10. Lilja, J., P. Salonen, T. Kaija, and P. de Maagt, "Design and manufacturing of robust textile antennas for harsh environments," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4130-4140, Sep. 2012.
    doi:10.1109/TAP.2012.2207035

    11. Smith, G., "Directive properties of antennas for transmission into a material half-space," IEEE Trans. Antennas Propag., Vol. 32, No. 3, 232-246, Mar. 1984.
    doi:10.1109/TAP.1984.1143307

    12. Warren, C., N. Chiwaridzo, and A. Giannopoulos, "Radiation characteristics of a high-frequency antenna in different dielectric environments," Proc. of the 15th Int. Conf. on Ground Penetrating Radar, 767-772, 2014.
    doi:10.1109/ICGPR.2014.6970529

    13. Foster, P. R., "Antenna problems in RFID systems," IEE Colloquium on RFID Technol. (Ref. No. 1999/123), 3/1-3/5, 1999.

    14. Dobkin, D. and S. Weigand, "Environmental effects on RFID tag antennas," IEEE MTT-S Int. Microw. Symp. Dig., 2005, 135-138, 2005.
    doi:10.1109/MWSYM.2005.1516541

    15. Karthika, K. and K. Kavitha, "Reconfigurable antennas for advanced wireless communications: A review," Wireless Pers. Commun.May 2021, Vol. 120, No. 4, 2711-2771, May 2021.

    16. Srivastava, M. and A. Kumar, "A review paper on reconfigurable antenna technique and methodology," Emerging Technologies in Data Mining and Information Security. Lecture Notes in Networks and Systems, Vol. 164, 605-615, J. M. R. S. Tavares, S. Chakrabarti, A. Bhattacharya, and S. Ghatak (eds.), Springer, Singapore, 2021.

    17. Christodoulou, C. G., Y. Tawk, S. A. Lane, and S. R. Erwin, "Reconfigurable antennas for wireless and space applications," Proc. of the IEEE, Vol. 100, No. 7, 2250-2261, Jul. 2012.
    doi:10.1109/JPROC.2012.2188249

    18. Costantine, J., Y. Tawk, S. E. Barbin, and C. G. Christodoulou, "Reconfigurable antennas: Design and applications," Proc. of the IEEE, Vol. 103, No. 3, 424-437, Mar. 2015.
    doi:10.1109/JPROC.2015.2396000

    19. Oliveri, G., D. H. Werner, and A. Massa, "Reconfigurable antennas: Design and applications reconfigurable electromagnetics through metamaterials --- A review," Proc. of the IEEE, Vol. 103, No. 7, 1034-1056, Jul. 2015.
    doi:10.1109/JPROC.2015.2394292

    20. Haupt, R. L. and M. Lanagan, "Reconfigurable antennas," IEEE Antennas and Prop. Mag., Vol. 55, No. 1, 49-61, Feb. 2013.
    doi:10.1109/MAP.2013.6474484

    21. Pringle, L. N., P. H. Harms, S. P. Blalock, G. N. Kiesel, E. J. Kuster, P. G. Friederich, R. J. Prado, J. M. Morris, and G. S. Smith, "A reconfigurable aperture antenna based on switched links between electrically small metallic patches," IEEE Trans. Antennas Propag., Vol. 52, No. 6, 1434-1445, Jun. 2004.
    doi:10.1109/TAP.2004.825648

    22. Soltani, S., P. Lotfi, and R. D. Murch, "Design and optimization of multiport pixel antennas," IEEE Trans. Antennas Propag., Vol. 66, No. 4, 2049-2054, Apr. 2018.
    doi:10.1109/TAP.2018.2800759

    23. Lotfi, P., S. Soltani, and R. D. Murch, "Printed endfire beam-steerable pixel antenna," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 3913-3923, Aug. 2017.
    doi:10.1109/TAP.2017.2716399

    24. Jiang, F., C.-Y. Chiu, S. Shen, Q. S. Cheng, and R. Murch, "Pixel antenna optimization using N-port characteristic mode analysis," IEEE Trans. Antennas Propag., Vol. 68, No. 5, 3336-3347, May 2020.
    doi:10.1109/TAP.2019.2963588

    25. Jiang, F., S. Shen, C.-Y. Chiu, Z. Zhang, Y. Zhang, Q. S. Cheng, and R. Murch, "Pixel antenna optimization based on perturbation sensitivity analysis," IEEE Trans. Antennas Propag., Vol. 70, No. 1, 472-486, Jan. 2022.
    doi:10.1109/TAP.2021.3097104

    26. Quijano, J. L. A. and G. Vecchi, "Optimization of an innovative type of compact frequency-reconfigurable antenna," IEEE Trans. Antennas Propag., Vol. 57, No. 1, 9-18, Jan. 2009.
    doi:10.1109/TAP.2008.2009649

    27. Ogawa, K., T. Takahashi, Y. Koyanagi, and K. Ito, "Automatic impedance matching of an active helical antenna near a human operator," 33rd Eur. Microw. Conf. Proc. (IEEE Cat. No.03EX723C), Vol. 3, 1271-1274, 2003.
    doi:10.1109/EUMA.2003.340850

    28. De Mingo, J., A. Valdovinos, A. Crespo, D. Navarro, and P. Garcia, "An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 2, 489-497, Feb. 2004.
    doi:10.1109/TMTT.2003.821909

    29. Huang, L., "Theoretical and experimental investigation of adaptive antenna impedance matching for multiband mobile phone applications," IEE Wideband and Multi-band Antennas and Arrays 2005 (Ref. No. 2005/11059), 13-17, 2005.
    doi:10.1049/ic:20050280

    30. Qiao, D., et al., "Antenna impedance mismatch measurement and correction for adaptive CDMA transceivers," IEEE MTT-S Int. Microw. Symp. Dig., 2005, 783-786, 2005.
    doi:10.1109/MWSYM.2005.1516730

    31. Hur, B., W. R. Eisenstadt, and K. L. Melde, "Testing and validation of adaptive impedance matching system for broadband antenna," Electronics, Vol. 8, No. 9, 1055, Sep. 2019.
    doi:10.3390/electronics8091055

    32. Liu, F.-X., Z. Xu, D. C. Ranasinghe, and C. Fumeaux, "Textile folded half-mode substrate-integrated cavity antenna," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1693-1697, 2016.
    doi:10.1109/LAWP.2016.2524458

    33. Dissanayake, T., K. P. Esselle, and M. R. Yuce, "Dielectric loaded impedance matching for wideband implanted antennas," IEEE Trans. Microw. Theory Techn., Vol. 57, No. 10, 2480-2487, Oct. 2009.
    doi:10.1109/TMTT.2009.2029664

    34. Soontornpipit, P., C. M. Furse, and Y. C. Chung, "Design of implantable microstrip antenna for communication with medical implants," IEEE Trans. Microw. Theory Techn., Vol. 52, No. 8, 1944-1951, Aug. 2004.
    doi:10.1109/TMTT.2004.831976

    35. Deleruyelle, T., P. Pannier, M. Egels, and E. Bergeret, "An RFID tag antenna tolerant to mounting on materials," IEEE Antennas and Prop. Mag., Vol. 52, No. 4, 14-19, Aug. 2010.
    doi:10.1109/MAP.2010.5638229

    36. Luomaniemi, R., P. Yla-Oijala, A. Lehtovuori, and V. Viikari, "Designing hand-immune handset antennas with adaptive excitation and characteristic modes," IEEE Trans. Antennas Propag., Vol. 69, No. 7, 3829-3839, Jul. 2021.
    doi:10.1109/TAP.2020.3044640

    37. Fischer, S. B. and J. Hesselbarth, "Power divider network for dual-fed adaptive antenna," Int. J. of Microw. and Wireless Technol., 1-8, Mar. 2022.

    38. Jeeninga, M., A. J. van der Schaft, and C. De Persis, "Graph theoretic formulae for the determinant and adjugate of Matrices carrying Graph Structure," IFAC-Papers OnLine, Vol. 51, No. 23, 259-264, 2018.
    doi:10.1016/j.ifacol.2018.12.045