Vol. 137

Latest Volume
All Volumes
All Issues
2023-08-29

Low Complexity Irregular Clusters Tiling through Quarter Region Rotational Symmetry

By Ahmed Jameel Abdulqader
Progress In Electromagnetics Research C, Vol. 137, 81-92, 2023
doi:10.2528/PIERC23040604

Abstract

In order to reduce the complexity and cost of an N×M large planar array from a practical point of view, firstly, the array matrix is divided into four equal N/4×M/4 quarter regions, and then only one quarter is selected to be optimized. After that, this selected quarter region is tiled with a few irregular polyomino clusters (IPC) and then rotating it to the other three-quarter regions. This method is called Quarter Region Rotational Symmetry (QRRS). The copy from the selected region is rotated by three angles 90,180 and 270 degrees respectively until the main planar array is filled. Two methods of feeding clusters based on amplitude only and phase only were used to reduce the complexity further. In addition, the complexity can bereduced more by applying the thinning technique with clusters or building clusters for a part of the planar array. A genetic algorithm (GA) is used to implement these ideas until a radiation pattern (RP) useful for modern applications. An additional constraint is included in the optimization process represented by a mask to cover the pattern according to the desired shape. The simulation results showed that the RP can be fully controlled by applying the QRRS technique successfully while reducing the complexity of the feeding network to only 2.25% in the amplitude-only and phase-only cases, and 1.75% and 1.5% in the thinning and partially tiling cases, respectively. Moreover, a detailed design of the feeding network circuit of the main planar array based on IPCis given for practical implementation.

Citation


Ahmed Jameel Abdulqader, "Low Complexity Irregular Clusters Tiling through Quarter Region Rotational Symmetry," Progress In Electromagnetics Research C, Vol. 137, 81-92, 2023.
doi:10.2528/PIERC23040604
http://test.jpier.org/PIERC/pier.php?paper=23040604

References


    1. Anselmi, N., P. Rocca, M. Salucci, and A. Massa, "Irregular phased array tiling by means of analytic schemata-driven optimization," IEEE Trans. Antennas Propag., Vol. 65, 4495-4510, 2017.
    doi:10.1109/TAP.2017.2722539

    2. Mohammed, J. R., A. J. Abdulqader, and R. H. Thaher, "Array pattern recovery under amplitude excitation errors using clustered elements," Progress In Electromagnetics Research M, Vol. 98, 183-192, 2020.
    doi:10.2528/PIERM20101906

    3. Abdulqader, A. J., R. H. Thaher, and J. R. Mohammed, "Array radiation pattern recovery under random errors using clustered linear array," Journal of Engineering and Sustainable Development (JEASD), Vol. 26, No. 1, 43-54, 2022.
    doi:10.31272/jeasd.26.1.5

    4. Abdulqader, A. J., J. R. Mohammed, and Y. A. Ali, "A T-shaped polyomino subarray design method for controlling sidelobe level," Progress In Electromagnetics Research C, Vol. 126, 243-251, 2022.
    doi:10.2528/PIERC22080803

    5. Abdulqader, A. J., A. N. Mahmood, and Y. E. M. Ali, "A multi-objective array pattern optimization via thinning approach," Progress In Electromagnetics Research C, Vol. 127, 251-261, 2022.
    doi:10.2528/PIERC22101904

    6. Mohammed, J. R., R. H. Thaher, and A. J. Abdulqader, "Linear and planar array pattern nulling via compressed sensing," Journal of Telecommunications and Information Technology, 50-55, 2021.
    doi:10.26636/jtit.2021.152921

    7. Guney, K. and M. Onay, "Amplitude-only pattern nulling of linear antenna arrays with the use of bees algorithm," Progress In Electromagnetics Research, Vol. 70, 21-36, 2007.
    doi:10.2528/PIER07011204

    8. Abdulqader, A. J., J. R. Mohammed, and R. H. Thaher, "Phase-only nulling with limited number of controllable elements," Progress In Electromagnetics Research C, Vol. 99, 167-178, 2020.
    doi:10.2528/PIERC20010203

    9. Rocca, P., G. Oliveri, R. J. Mailloux, and A. Massa, "Unconventional phased array architectures and design methodologies --- A review," Proc. IEEE, Vol. 104, No. 3, 544-560, Mar. 2016.
    doi:10.1109/JPROC.2015.2512389

    10. Haupt, R. L., Antenna Arrays: A Computational Approach, John Wiley & Sons, Hoboken, NJ, 2010.
    doi:10.1002/9780470937464

    11. Ahmed, J. A., R. M. Jafar, and H. T. Raad, "Unconventional and irregular clustered arrays," 1st International Ninevah Conference on Engineering and Technology (INCET2021), Vol. 1152, IOP Publisher, 2021.

    12. Bencivenni, C., M. V. Ivashina, R. Maaskant, and J. Wettergren, "Synthesis of maximally sparse arrays using compressive sensing and full-wave analysis for global earth coverage applications," IEEE Trans. Antennas Propag., Vol. 64, No. 11, 4872-4877, Nov. 2016.
    doi:10.1109/TAP.2016.2594840

    13. Hall, P. S. and M. S. Smith, "Sequentially rotated arrays with reduced sidelobe levels," IEE Proc. Microw. Antennas Propag., Vol. 141, 321-325, Aug. 1994.
    doi:10.1049/ip-map:19941193

    14. Toyama, N., "Aperiodic array consisting of subarrays for use in small mobile earth stations," IEEE Trans. Antennas Propag., Vol. 53, No. 6, 2004-2010, Jun. 2005.
    doi:10.1109/TAP.2005.848486

    15. Mailloux, R. J., et al., "Irregular polyomino-shaped subarrays for spacebased active arrays," Int. J. Antennas Propag., Vol. 2009, Article ID 956524, 2009.

    16. Rocca, P., et al., "GA-based optimization of irregular subarray layouts for wideband phased array design," IEEE Antennas Wireless Propag. Lett., Vol. 14, 131-134, 2015.
    doi:10.1109/LAWP.2014.2356855

    17. Spence, T. G. and D. H. Werner, "Design of broadband planar arrays based on the optimization of aperiodic tilings," IEEE Trans. Antennas Propag., Vol. 56, 76-86, Jan. 2008.
    doi:10.1109/TAP.2007.913145

    18. Desreux, S. and E. Remila, "An optimal algorithm to generate tilings," J. Discrete Alg., No. 4, 168-180, 2006.
    doi:10.1016/j.jda.2005.01.003

    19. Abdulqader, A. J., J. R. Mohammed, and R. H. Thaher, "Antenna pattern optimization via clustered arrays," Progress In Electromagnetics Research M, Vol. 95, 177-187, 2020.
    doi:10.2528/PIERM20042307

    20. Zare, A. S. and S. Baghaiee, "Application of ant colony optimization algorithm to pattern synthesis of uniform circular antenna array," ACES Journal, Vol. 30, No. 8, 810-818, Aug. 2021.

    21. He, G., Y. Zhan, Y. Pei, and B. Wu, "Subarrayed antenna array synthesis using ternary adjusting method," International Journal of Antennas and Propagation, Vol. 2014, Article ID 898717, 5 pages, 2014.

    22. Cetinkaya, S., L. Afeef, G. Mumcu, and H. Arslan, "Heuristic inspired precoding for millimeter-wave MIMO systems with lens antenna subarrays," 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), 1-6, Helsinki, Finland, 2022.

    23. Zhou, J., Y. Wang, Z. Wang, C. Pang, Y. Li, and X. Wang, "Irregular subarray tiling via rotational symmetry," IEEE Antennas Wireless Propag. Lett., 1-5, 2022.

    24. Dong, W., Z.-H. Xu, X.-H. Liu, L.-S.-B. Wang, and S.-P. Xiao, "Irregular subarray tiling via heuristic iterative convex relaxation programming," IEEE Trans. Antennas Propag., Vol. 68, No. 4, 2842-2852, 2020.
    doi:10.1109/TAP.2019.2955070

    25. Yang, S., W. Lyu, and Z.-P. Zhang, An off-grid compressive sensing strategy for the subarray synthesis of non-uniform linear arrays, ArXiv abs/2112.15343, 2021.

    26. Mailloux, R. J., S. G. Santarelli, D. L. Roberts, and D. Luu, "Irregular polyomino-shaped subarrays for space-based active arrays," International Journal of Antennas and Propagation, Vol. 2009, Article ID 956524, 9 pages, 2009.