Vol. 137

Latest Volume
All Volumes
All Issues

High-Sensitivity Refractive Index Sensor of Arc-Shape Photonic Crystal Fiber Based on Surface Plasmon Resonance

By Hai Ping Li, Juan Ruan, Xin Li, Qian Qian Zhang, Jian Jun Chen, Tao He, and Guangyong Wei
Progress In Electromagnetics Research C, Vol. 137, 29-38, 2023


A surface plasmon resonance-based arc-shaped photonic crystal fiber high-sensitivity refractive index (RI) sensor is proposed. An open arc-shaped analyte channel is produced at the top of the fiber to facilitate RI detection of the analyte, and a gold film is coated inside the arc-shaped structure to stimulate mode coupling. The performance of the sensor is analyzed by using the finite element method (FEM). The results have demonstrated that the sensor can detect a sensing range of 1.35-1.42 with maximum RI sensitivity of 24900 nm/RIU and resolution of 4.01×10-6 RIU. Furthermore, the highest figure of merit (FOM) of 661.71 RIU-1 is obtained. Additionally, the effects of air hole size and air hole distance on sensitivity are investigated. Finally, the proposed sensor characterizes great potential in biomedical, chemical, and other fields due to its excellent performance.


Hai Ping Li, Juan Ruan, Xin Li, Qian Qian Zhang, Jian Jun Chen, Tao He, and Guangyong Wei, "High-Sensitivity Refractive Index Sensor of Arc-Shape Photonic Crystal Fiber Based on Surface Plasmon Resonance," Progress In Electromagnetics Research C, Vol. 137, 29-38, 2023.


    1. Santoro, S., A. H. Avci, A. Politano, and E. Curcio, "The advent of thermoplasmonic membrane distillation," Chemical Society Reviews, Vol. 51, 6087-6125, 2022.

    2. Abramovich, S., D. Dutta, C. Rizza, S. Santoro, M. Aquino, A. Cupolillo, J. Occhiuzzi, M. F. L. Russa, B. Ghosh, D. Farias, A. Locatelli, D. W. Boukhvalov, A. Agarwal, E. Curcio, M. B. Sadan, and A. Politano, "NiSe and CoSe topological nodal-line semimetals: A sustainable platform for efficient thermoplasmonics and solar-driven photothermal membrane distillation," Small, Vol. 18, No. 31, 2201473, 2022.

    3. Elmaghraoui, D., A. Politano, and S. Jaziri, "Photothermal response of plasmonic nanofillers for membrane distillation," The Journal of Chemical Physics, Vol. 152, 114102, 2020.

    4. Politano, A., G. D. Profio, E. Fontananova, V. Sanna, A. Cupolillo, and E. Curcio, "Overcoming temperature polarization in membrane distillation by thermoplasmonic effects activated by Ag nanofillers in polymeric membranes," Desalination, Vol. 451, No. 1, 192-199, 2019.

    5. Politano, A., P. Argurio, G. D. Profio, V. Sanna, A. Cupolillo, S. Chakraborty, H. A. Arafat, and E. Curcio, "Photothermal membrane distillation for seawater desalination," Advanced Materials, Vol. 29, No. 2, 1603504, 2016.

    6. Santoro, S., M. Aquino, C. Rizza, J. Occhiuzzi, D. Mastrippolito, G. D'Olimpio, A. H. Avci, J. D. Santis, V. Paolucci, L. Ottaviano, L. Lozzi, A. Ronen, M. Bar-Sadan, D. S. Han, A. Politano, and E. Curcio, "Lithium recovery through WS2 nanofillers-promoted solar photothermal membrane crystallization of LiCl," Desalination, Vol. 546, No. 15, 116186, 2023.

    7. Santoro, S., M. Aquino, C. Rizza, A. Cupolillo, D. W. Boukhvalov, G. D'Olimpio, S. Abramovich, A. Agarwal, M. B. Sadan, A. Politano, and E. Curcio, "Plasmonic nanofillers-enabled solar membrane crystallization for mineral recovery," Desalination, Vol. 563, No. 1, 116730, 2023.

    8. Avci, A. H., S. Santoro, A. Politano, M. Propato, M. Micieli, M. Aquino, W. J. Zhang, and E. Curcio, "Photothermal sweeping gas membrane distillation and reverse electrodialysis for light-to-heat-to-power conversion," Chemical Engineering and Processing --- Process Intensification, Vol. 164, 108382, 2021.

    9. Politano, A., A. Cupolillo, G. D. Profio, H. A. Arafat, G. Chiarello, and E. Curcio, "When plasmonics meets membrane technology," Journal of Physics: Condensed Matter, Vol. 28, 363003, 2016.

    10. Viti, L., J. Hu, D. Coquillat, A. Politano, W. Knap, and M. S. Vitiello, "Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave," Scientific Reports, Vol. 6, 20474, 2016.

    11. Viti, L., D. Coquillat, A. Politano, K. A. Kokh, Z. S. Aliev, M. B. Babanly, O. E. Tereshchenko, W. Knap, E. V. Chulkov, and M. S. Vitiello, "Plasma-wave terahertz detection mediated by topological insulators surface states," Nano Letters, Vol. 16, 80-87, 2016.

    12. Agarwal, A., M. S. Vitiello, L. Viti, A. Cupolillo, and A. Politano, "Plasmonics with two-dimensional semiconductors: From basic research to technological applications," Nanoscale, Vol. 10, No. 19, 8938-8946, 2018.

    13. Politano, A., L. Viti, and M. S. Vitiello, "Optoelectronic devices, plasmonics and photonics with topological insulators," APL Mater, Vol. 5, 035504, 2017.

    14. Pogna, E. A. A., L. Viti, A. Politano, M. Brambilla, G. Scamarcio, M. S. Vitiello, and , "Mapping propagation of collective modes in Bi2Se3 and Bi2Te2.2Se0.8 topological insulators by near-field terahertz nanoscopy," Nature Communications, Vol. 12, 6672, 2021.

    15. Politano, A., V. Formoso, and G. Chiarello, "Annealing effects on the plasmonic excitations of metal/metal interfaces," Applied Surface Science, Vol. 255, No. 11, 6038-6042, 2009.

    16. Politano, A., "Interplay of structural and temperature effects on plasmonic excitations at noble-metal interfaces," Philosophical Magazine, Vol. 92, No. 6, 2012.

    17. Qiu, G. Y., Z. B. Gai, L. Saleh, J. K. Tang, T. Gui, G. A. K. Kullak-Ublic, and J. Wang, "Thermoplasmonic-assisted cyclic cleavage amplification for self-validating plasmonic detection of SARS-CoV-2," ACS Nano, Vol. 15, 7536, 2021.

    18. Kang, H. K., W. Hong, Y. J. An, S. Yoo, H. J. Kwon, and Y. Nam, "Thermoplasmonic optical fiber for localized neural stimulation," ACS Nano, Vol. 14, 11406, 2020.

    19. Herzog, J. B., M. W. Knight, and D. Natelson, "Thermoplasmonics: Quantifying plasmonic heating in single nanowires," Nano Letters, Vol. 14, 499, 2020.

    20. Baffou, G., R. Quidant, and C. Girard, "Thermoplasmonics modeling: A Green's function approach," Physical Review B, Vol. 82, 165424, 2010.

    21. Lee, J. H., B. C. Kim, B. K. Oh, and J. W. Choi, "Highly sensitive localized surface plasmon resonance immunosensor for label-free detection of HIV-1," Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 9, No. 7, 1018-1026, 2013.

    22. Rifat, A. A., R. Hasan, R. Ahmed, and H. Butt, "Photonic crystal fiber-based plasmonic biosensor with external sensing approach," Journal of Nanophotonics, Vol. 12, No. 1, 012503, 2018.

    23. Maier, S. A., Plasmonics: Fundamentals and Applications, 1st Ed., Springer, New York, 2007.

    24. Ozbay, E., "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, 189, 2006.

    25. Hayashi, S. and T. Okamoto, "Plasmonics: Visit the past to know the future," Journal of Physics D: Applied Physics, Vol. 45, 10927, 2014.

    26. Politano, A. and G. Chiarello, "Plasmon modes in graphene: Status and prospect," Nanoscale, Vol. 6, 10927, 2014.

    27. Politano, A., G. Chiarello, and C. Spinella, "Plasmon spectroscopy of graphene and other two-dimensional materials with transmission electron microscopy," Materials Science in Semiconductor Processing, Vol. 65, 88, 2017.

    28. Han, H. X., D. L. Hou, L. Zhao, N. N. Luan, L. Song, Z. H. Liu, Y. D. Lian, J. F. Liu, and Y. S. Hu, "Large detection-range plasmonic sensor based on an H-shaped photonic crystal fiber," Sensors, Vol. 20, No. 4, 1009, 2020.

    29. Jorgenson, R. C. and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sensors and Actuators B: Chemical, Vol. 12, No. 3, 213-220, 1993.

    30. Li, H. P., J. Ruan, X. Li, G. Y. Wei, and T. He, "High-sensitivity temperature sensor based on surface plasmon resonance photonic crystal fiber," Progress In Electromagnetics Research M, Vol. 116, 11-21, 2023.

    31. Mei, C., Y. Wu, S. Qiu, J. H. Yuan, X. Zhou, and K. P. Long, "Design of dual-core photonic crystal fiber for temperature sensor based on surface plasmon resonance effect," Optics Communications, Vol. 508, 127838, 2022.

    32. Ahmed, T., F. Haider, R. A. Aoni, and R. Ahmed, "Highly sensitive U-shaped micro-channel photonic crystal fiber-based plasmonic biosensor," Plasmonics, Vol. 16, No. 6, 2215-2223, 2021.

    33. Chen, X., L. Xia, and C. Li, "Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection," IEEE Photonics Journal, Vol. 10, No. 1, 1-9, 2018.

    34. Yan, X., R. Fu, T. L. Cheng, and S. G. Li, "A highly sensitive refractive index sensor based on a V-shaped photonic crystal fiber with a high refractive index range," Sensors, Vol. 21, No. 11, 3782, 2021.

    35. Yang, H., M. Wang, G. Y. Wang, and J. Q. Yao, "Highly sensitive refractive index sensor based on SPR with silver and titanium dioxide coating," Optical and Quantum Electronics, Vol. 53, No. 6, 341, 2021.

    36. Zhang, S., J. Li, S. Li, Q. Liu, J. Wu, and Y. Guo, "Surface plasmon resonance sensor based on D-shaped photonic crystal fiber with two micro-openings," Journal of Physics D: Applied Physics, Vol. 51, No. 30, 305104, 2018.

    37. An, G. W., S. G. Li, X. Yan, X. N. Zhang, Z. Y. Yuan, H. Y. Wang, Y. N. Zhang, X. P. Hao, Y. N. Shao, and Z. C. Han, "Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance," Plasmonics, Vol. 12, 465-471, 2017.

    38. Yang, Z., L. Xia, C. Li, X. Chen, and D. M. Liu, "A surface plasmon resonance sensor based on concave-shaped photonic crystal fiber for low refractive index detection," Optics Communications, Vol. 430, 195-203, 2019.

    39. Wang, S. T., Y. H. Lu, W. B. Ma, N. Liu, and S. H. Fan, "D-shaped surface plasmon photonic crystal fiber temperature sensor," Plasmonics, Vol. 17, No. 5, 1911-1919, 2022.

    40. Pan, H. G., F. Pan, A. L. Zhang, C. B. Cao, and F. J. Xue, "Wide refractive index detection range surface plasmon resonance sensor based on D-shaped photonic crystal fiber," Optical and Quantum Electronics, Vol. 54, No. 6, 393, 2022.

    41. Zhang, Y., Z. Yi, Y. Shi, C. Liu, X. L. Li, J. W. Lv, L. Yang, and P. K. Chu, "Photonic fibre crystal sensor with a D-shape based on surface plasma resonance containing microfluidic channels for detection of a wide range of refractive indexes," Journal of Modern Optics, Vol. 69, No. 1, 1-11, 2022.

    42. Zhang, Z. C., J. H. Yuan, S. Qiu, G. Y. Zhou, X. Zhou, B. B. Yan, Q. Wu, K. R. Wang, and X. Z. Sang, "Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect," Chinese Physics B, Vol. 32, 034208, 2023.