Vol. 137

Latest Volume
All Volumes
All Issues
2023-08-30

Miniaturized Hexagonal Antenna with Defected Ground Plane for 5G mm Wave Applications

By Ramya Shetty, Ashish Singh, Anil Kumar Bhat, Satheesh Rao, and Harshitha Bhat
Progress In Electromagnetics Research C, Vol. 137, 93-109, 2023
doi:10.2528/PIERC23052902

Abstract

The paper presents a very compact hexagonal mm-wave antenna of dimension 9 x 5 x 0.25 mm3 with defected ground plane for mm wave applications. The parametric design analysis is done for circular patch and hexagonal antenna on the same defected ground plane, and performance parameters of the antenna are analyzed. The designed hexagonal antenna with defected ground plane is compared with existing planar mm antennas in literature and works in ultra wide band frequency at 40 GHz to 52 GHz with a minimum gain of 5.3 dBi and maximum gain of 6.5 dBi over the band and has total efficiency of 80-95.9%. Antenna characteristic behavior is analyzed by varying the length of notches of the ground plane and other parameters such as thickness of the substrate, dielectric constant, and width of the strip of antenna. The antenna equivalent model is presented and is also simulated using Linear Technology (LT Spice). The radiation patterns are analyzed, and S11 impedance of the antenna is studied using Smith chart. The antenna is simulated using CST Microwave Studio simulation tool and fabricated, and the results are validated using VNA (Vector Network Analyzer). This antenna's low profile enables easy integration with micro circuits and can be used in applications such as fixed and mobile satellite, earth explorations satellite, space research services, broadcasting satellite services, international mobile telecommunication services, and High-Altitude Platform Systems (HAPS) services in mm-wave domain.

Citation


Ramya Shetty, Ashish Singh, Anil Kumar Bhat, Satheesh Rao, and Harshitha Bhat, "Miniaturized Hexagonal Antenna with Defected Ground Plane for 5G mm Wave Applications," Progress In Electromagnetics Research C, Vol. 137, 93-109, 2023.
doi:10.2528/PIERC23052902
http://test.jpier.org/PIERC/pier.php?paper=23052902

References


    1. Al-Alem, Y. and A. A. Kishk, "Efficient millimeter-wave antenna based on the exploitation of microstrip line discontinuity radiation," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 2844-2852, 2018.
    doi:10.1109/TAP.2018.2823865

    2. Dangi, R., P. Lalwani, G. Choudhary, I. You, and G. Pau, "Study and investigation on 5G technology: A systematic review," Sensors, Vol. 22, No. 1, 26, 2022.
    doi:10.3390/s22010026

    3. Gupta, A. K. and A. Banerjee, Spectrum above Radio Bands Spectrum Sharing: The Next Frontier in Wireless Networks, 7596, 2020.

    4. Itu, J., "Provisional final acts," World Radiocommunication Conference 2019, ITU Publications, 2019.

    5. Martin, M. A., "Review on millimeter wave antennas-potential candidate for 5G enabled applications," Advanced Electromagnetics, Vol. 5, No. 3, 98, 2016.
    doi:10.7716/aem.v5i3.448

    6. Huang, J., C. H. Wang, R. Feng, J. Sun, W. Zhang, and Y. Yang, "Multi-frequency mmWave massive MIMO channel measurements and characterization for 5G wireless communication systems," IEEE Journal on Selected Areas in Communications, Vol. 35, No. 7, 1591-1605, 2017.
    doi:10.1109/JSAC.2017.2699381

    7. Li, Y. and J. Wang, "Dual-band leaky-wave antenna based on dual-mode composite microstrip line for microwave and millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 4, 1660-1668, 2018.
    doi:10.1109/TAP.2018.2800705

    8. Anjos, E. V. P., D. M. M.-P. Schreurs, G. A. E. Vandenbosch, and M. Geurts, "A 14-50-GHz phase shifter with all-pass networks for 5G mobile applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 68, No. 2, 762-774, 2019.
    doi:10.1109/TMTT.2019.2948852

    9. Huang, J., C. X. Wang, H. Chang, J. Sun, and X. Gao, "Multi-frequency multi-scenario millimeter wave MIMO channel measurements and modeling for B5G wireless communication systems," IEEE Journal on Selected Areas in Communications, Vol. 38, No. 9, 2010-2025, 2020.
    doi:10.1109/JSAC.2020.3000839

    10. Tripathi, S., N. V. Sab, K. G. Abhishek, and H. S. Dhillon, "Millimeter-wave and terahertz spectrum for 6G wireless," 6G Mobile Wireless Networks Cham, 83-121, Springer International Publishing, 2021.

    11. Harini, V., M. V. S. Sairam, and R. Madhu, "A wide band log periodic millimeter-wave antenna for 5G femtocells applications," Transactions on Emerging Telecommunications Technologies, Vol. 32, No. 11, 2021.

    12. Juneja, S., R. Pratap, and R. Sharma, "Semiconductor technologies for 5G implementation at millimeter wave frequencies --- Design challenges and current state of work," International Journal of Engineering Science and Technology, Vol. 24, No. 1, 205-217, 2021.

    13. Serrano, A. L. C., M. Gustavo, I. Abe, A. G. Palomino, and G. Rehder, "Millimeter-wave wireless integrated systems: What to expect for future solutions," Journal of Integrated Circuits and Systems, Vol. 17, No. 2, 1-7, 2022.
    doi:10.29292/jics.v17i2.627

    14. Farooq, U. and G. M. Rather, "A miniaturized Ka/V dual band millimeter wave antenna for 5G body centric network applications," Alexandria Engineering J., Vol. 61, No. 10, 8089-8096, 2022.
    doi:10.1016/j.aej.2022.01.044

    15. Abbas, M. A., A. Allam, A. Gaafar, H. M. Elhennawy, and M. F. A. Sree, "Compact UWB MIMO antenna for 5G millimeter-wave applications," Sensors, Vol. 23, No. 5, 2702, 2023.
    doi:10.3390/s23052702

    16. Ullah, H., H. F. Abutarboush, A. Rashid, and F. A. Tahir, "A compact low-profile antenna for millimeter-wave 5G mobile phones," Electronics, Vol. 11, No. 19, 3256, 2022.
    doi:10.3390/electronics11193256

    17. Li, S., T. Chi, Y. Wang, and H. Wang, "A millimeter-wave dual-feed square loop antenna for 5G communications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6317-6328, IEEE, 2017.
    doi:10.1109/TAP.2017.2723920

    18. Marzouk, H. M., M. I. Ahmed, and A. H. A. Shaalan, "Novel dual-band 28/38 GHz MIMO antennas for 5G mobile applications," Progress In Electromagnetics Research C, Vol. 93, 103-117, 2019.
    doi:10.2528/PIERC19032303

    19. Mahmoud, K. R. and M. M. Ahmed, "Performance of tri-band multi-polarized array antenna for 5G mobile base station adopting polarization and directivity control," IEEE Access, Vol. 6, 8682-8694, 2018.
    doi:10.1109/ACCESS.2018.2805802

    20. Haraz, O. M., M. M. A. Mohamed, A. Saleh, and A.-R. Sebak, "Design of a 28/38 GHz dualband printed slot antenna for the future 5G mobile communication Networks," 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1532-1533, IEEE, 2015.
    doi:10.1109/APS.2015.7305155

    21. Kornprobst, J., K. Wang, G. Hamberger, and T. F. Eibert, "A mm-wave patch antenna with broad bandwidth and a wide angular range," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 4293-4298, 2017.
    doi:10.1109/TAP.2017.2710261

    22. Hasan, M. N., S. Bashir, and S. Chu, "Dual band omnidirectional millimeter wave antenna for 5G communications," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 12, 1581-1590, 2019.
    doi:10.1080/09205071.2019.1617790

    23. Wu, Q., J. Yin, C. Yu, H. Wang, and W. Hong, "Low-profile millimeter-wave SIW cavity backed dualband circularly polarized antenna," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 7310-7315, 2017.
    doi:10.1109/TAP.2017.2758165

    24. Chu, Q.-X., X.-R. Li, and M. Ye, "High-gain printed log-periodic dipole array antenna with parasitic cell for 5G communication," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6338-6344, 2017.
    doi:10.1109/TAP.2017.2723916

    25. Agarwal, M., J. K. Dhanoa, and M. K. Khandelwal, "Two-port hexagon shaped MIMO microstrip antenna for UWB applications integrated with double stop bands for WiMax and WLAN," AEU --- International Journal of Electronics and Communications, Vol. 138, 153885, 2021.
    doi:10.1016/j.aeue.2021.153885

    26. Vahid Sarani, A. and M. H. Neshati, "Design investigation of dual-band dual-circularly polarized hybrid antenna array using semi-hexagonal HMSIW cavity," AEU --- International Journal of Electronics and Communications, Vol. 157, 154437, 2022.
    doi:10.1016/j.aeue.2022.154437

    27. Bahl, I. J. and P. Bartia, Microstrip Patch Antenna, Artech House, Massachusetts 02026, 1980.

    28. Ez-zaki, F., A. B. Khaoula, S. Ahmad, H. Belahrach, A. Ghammaz, A. J. A. Al-Gburi, and O. P. Nasser, "Circuit modeling of broadband antenna using vector fitting and fostering form approaches for IoT applications," Electronics, Vol. 11, No. 22, 3724, 2022.
    doi:10.3390/electronics11223724