Vol. 137

Latest Volume
All Volumes
All Issues
2023-09-15

Coupling Analysis of Multi-Physical Fields of Magnetic Gear Motor with Nonuniform Air-Gap Halbach Array Magnetization

By Zhangtao Kui, Kun Yang, Weizhao Tang, and Libing Jing
Progress In Electromagnetics Research C, Vol. 137, 251-262, 2023
doi:10.2528/PIERC23061402

Abstract

In this paper, a novel magnetic gear motor (MGM) with nonuniform air gap Halbach array magnetization is proposed to study the influence of temperature change on its electromagnetic performance. The inner PM adopts the Halbach array magnetization structure, which makes the inner rotor air gap have an uneven air gap structure, thereby improving the air gap flux density. In addition, the air gap magnetic field of MGM is analyzed by the finite element method (FEM), and the 3D model of the motor is established. The main losses of the motor, including copper loss, eddy current loss, and hysteresis loss are coupled to each component as a thermal source and studied by magneto-thermal coupling. The transient variation characteristics of loss distribution during MGM operation are comprehensively considered. The temperature variation of each component of the MGM with time during load operation is studied in detail. The results show that the temperature of the PM of the MGM is close to 91.8˚C when the rated load is running, and the PM of the motor does not undergo irreversible demagnetization.

Citation


Zhangtao Kui, Kun Yang, Weizhao Tang, and Libing Jing, "Coupling Analysis of Multi-Physical Fields of Magnetic Gear Motor with Nonuniform Air-Gap Halbach Array Magnetization," Progress In Electromagnetics Research C, Vol. 137, 251-262, 2023.
doi:10.2528/PIERC23061402
http://test.jpier.org/PIERC/pier.php?paper=23061402

References


    1. Jo, I.-H., H.-W. Lee, G. Jeong, W.-Y. Ji, and C.-B. Park, "A study on the reduction of cogging torque for the skew of a magnetic geared synchronous motor," IEEE Trans. Magn., Vol. 55, No. 2, 1-5, Feb. 2019.
    doi:10.1109/TMAG.2018.2873310

    2. Aiso, K., K. Akatsu, and Y. Aoyama, "A novel reluctance magnetic gear for high-speed motor," IEEE Trans. Ind. Appl., Vol. 55, No. 3, 2690-2699, May-Jun. 2019.
    doi:10.1109/TIA.2019.2900205

    3. Tang, H., J. Di, Z. Wu, and W. Li, "Temperature analysis for the asymmetric six-phase permanent magnet synchronous motor in healthy and fault-tolerant modes," IEEE Trans. Ind. Electron., Vol. 70, No. 7, 6482-6493, Jul. 2023.
    doi:10.1109/TIE.2022.3199938

    4. Huang, X., Q. Tan, L. Li, J. Li, and Z. Qian, "Winding temperature field model considering void ratio and temperature rise of a permanent-magnet synchronous motor with high current density," IEEE Trans. Ind. Electron., Vol. 64, No. 3, 2168-2177, Mar. 2017.
    doi:10.1109/TIE.2016.2625242

    5. Yan, L., Z. Dong, and S. Zhang, "Thermal analysis of a novel linear oscillating machine based on direct oil-cooling windings," IEEE Trans. Energy Convers., Vol. 37, No. 2, 1042-1051, Jun. 2022.
    doi:10.1109/TEC.2021.3118930

    6. Xu, Y., B. Zhang, and G. Feng, "Research on thermal capacity of a high-torque-density direct drive permanent magnet synchronous machine based on a temperature cycling module," IEEE Access, Vol. 8, 155721-155731, 2020.
    doi:10.1109/ACCESS.2020.3019483

    7. Song, Z., R. Huang, W. Wang, S. Liu, and C. Liu, "An improved dual iterative transient thermal network model for PMSM with natural air cooling," IEEE Trans. Energy Convers., Vol. 37, No. 4, 2588-2600, Dec. 2022.
    doi:10.1109/TEC.2022.3179172

    8. Gan, C., Y. Chen, X. Cui, J. Sun, R. Qu, and J. Si, "Comprehensive investigation of loss calculation and sequential iterative uid-solid coupling schemes for high-speed switched reluctance motors," IEEE Trans. Energy Convers., Vol. 36, No. 2, 671-681, Jun. 2021.
    doi:10.1109/TEC.2020.3023039

    9. Yang, C., Y. Zhang, and H. Qiu, "Influence of output voltage harmonic of inverter on loss and temperature field of permanent magnet synchronous motor," IEEE Trans. Magn., Vol. 55, No. 6, 1-5, Jun. 2019.

    10. Guo, C., S. Huang, J. Wang, and Y. Feng, "Research of cryogenic permanent magnet synchronous motor for submerged liquefied natural gas pump," IEEE Trans. Energy Convers., Vol. 33, No. 4, 2030-2039, Dec. 2018.
    doi:10.1109/TEC.2018.2868954

    11. Wang, H., J. Chen, Y. Jiang, and D. Wang, "Coupled electromagnetic and thermal analysis of permanent magnet rectifier generator based on LPTN," IEEE Trans. Magn., Vol. 58, No. 2, 1-5, Feb. 2022.
    doi:10.1109/TMAG.2021.3140011

    12. Tong, W., R. Sun, S. Li, and R. Tang, "Loss and thermal analysis for high-speed amorphous metal PMSMs using 3-D electromagnetic-thermal Bi-directional coupling," IEEE Trans. Energy Convers., Vol. 36, No. 4, 2839-2849, Dec. 2021.
    doi:10.1109/TEC.2021.3065336

    13. Huang, X., L. Li, B. Zhou, C. Zhang, and Z. Zhang, "Temperature calculation for tubular linear motor by the combination of thermal circuit and temperature field method considering the linear motion of air gap," IEEE Trans. Ind. Electron., Vol. 61, No. 8, 3923-3931, Aug. 2014.
    doi:10.1109/TIE.2013.2286576

    14. Tang, Y., L. Chen, F. Chai, and T. Chen, "Thermal modeling and analysis of active and end windings of enclosed permanent-magnet synchronous In-wheel motor based on multi-block method," IEEE Trans. Energy Convers., Vol. 35, No. 1, 85-94, Mar. 2020.
    doi:10.1109/TEC.2019.2946384

    15. Uzhegov, N., J. Barta, J. Kurfurst, C. Ondrusek, and J. Pyrhonen, "Comparison of high-speed electrical motors for a turbo circulator application," IEEE Trans. Ind. Appl., Vol. 53, No. 5, 4308-4317, Sept.-Oct. 2017.
    doi:10.1109/TIA.2017.2700793

    16. Liu, G., M. Liu, Y. Zhang, H. Wang, and C. Gerada, "High-speed permanent magnet synchronous motor iron loss calculation method considering multiphysics factors," IEEE Trans. Ind. Electron., Vol. 67, No. 7, 5360-5368, Jul. 2020.
    doi:10.1109/TIE.2019.2934075

    17. Li, W., P. Wang, D. Li, X. Zhang, J. Cao, and J. Li, "Multiphysical field collaborative optimization of premium induction motor based on GA," IEEE Trans. Ind. Electron., Vol. 65, No. 2, 1704-1710, Feb. 2018.
    doi:10.1109/TIE.2017.2752120

    18. Zhang, M., W. Li, and H. Tang, "Demagnetization fault diagnosis of the permanent magnet motor for electric vehicles based on temperature characteristic quantity," IEEE Trans. Transp. Electrif., Vol. 9, No. 1, 759-770, Mar. 2023.
    doi:10.1109/TTE.2022.3200927

    19. Almandoz, G., I. Gomez, G. Ugalde, J. Poza, and A. J. Escalada, "Study of demagnetization risk in PM machines," IEEE Trans. Ind. Appl., Vol. 55, No. 4, 3490-3500, Jul.-Aug. 2019.
    doi:10.1109/TIA.2019.2904459