Vol. 1

Latest Volume
All Volumes
All Issues
2007-12-02

Analysis of Wavefunction Distribution in Quantum Well Biased Laser Diode Using Transfer Matrix Method

By Edmund Samuel and Dyneshwar Patil
Progress In Electromagnetics Research Letters, Vol. 1, 119-128, 2008
doi:10.2528/PIERL07111902

Abstract

The paper presents the faster, simpler, and accurate algorithm to solve time independent Schrodinger equation based on transfer matrix method. We can thus calculate all bound and quasi bound energy and the corresponding probability density. A central part of this paper deals with the solving of Schrodinger equation for quantum well structure. Our results show that the transfer matrix method is accurate, it is easier to implement. The increase in well width increases the FWHM from 5.4 nanometer to 9.4 nanometer, while the increase in the Aluminum concentration the FWHM decreases from 8.98 to 5.4.

Citation

 (See works that cites this article)
Edmund Samuel and Dyneshwar Patil, "Analysis of Wavefunction Distribution in Quantum Well Biased Laser Diode Using Transfer Matrix Method," Progress In Electromagnetics Research Letters, Vol. 1, 119-128, 2008.
doi:10.2528/PIERL07111902
http://test.jpier.org/PIERL/pier.php?paper=07111902

References


    1. Samuel, E. P. and D. S. Patil, "Effect of aluminum mole fraction and well width on the probability density spreading in GaN/AlGaN quantum well," Optoelectronics and Advanced Materials-Rapid Communications, Vol. 8, 394, 2007.

    2. Chiu, C. H., H. C. Kuo, C. E. Lee, C. H. Lin, P. C. Cheng, H. W. Huang, T. C. Lu, S. C. Wang, and K. M. Leung, "Fabrication and characteristics of thin film InGaN-GaN light emitting diodes with TiO2/SiO2 omnidirectional reflectors," Semiconductor Science and Technology, Vol. 22, 831, 2007.

    3. Chen, C.-N., et al., "Effects of giant optical anisotropy in R-plane GaN/AlGaN quantum wells by valence band mixing," PIERS Online, Vol. 2, 562, 2006.

    4. Ahmed, I. and A. R. Baghai-Wadji, "1D canonical and perturbed quantum potential wave problem: A universal approach," PIERS Online, Vol. 3, 481, 2007.

    5. Chen, C.-N., W.-C. Chien, K.-F. Yarn, S.-H. Chang, and M.-L. Hung, "Intrinsic optical anisotropy in Zinc-blende semiconductor quantum wells," Progress In Electromagnetics Research Symposium, 223, Hangzhou, China, August 22-26, 2005.

    6. Brubach, J., A. Y. Silov, J. E. M. Haverkort, W. van der Vleuten, and J. H. Wolter, "Carrier capture in ultrathin InAs/GaAs quantum wells," Physical Review B, Vol. 61, 136833, 2000.

    7. Peng, L.-H., C.-M. Lai, C.-W. Shih, C.-C. Chuo, and J.-I. Chyi, "Boundary effects on the optical properties of InGaN multiple quantum wells ," IEEE J. of Selected Topics in Quantum Electronics, Vol. 9, 708, 2003.

    8. Baro, M., H. Chr. Kaiser, H. Neidhardt, and J. Rehberg, "Dissipative Schrodinger-Poisson systems," J. of Mathematical Physics, Vol. 45, 21, 2004.

    9. Gmachl, C., D. L. Sivco, R., F. Colombelli, F. Capasso, and A. Y. Cho, "Ultra-broadband semiconductor laser," Letters to Nature, Vol. 415, 883, 2002.

    10. Samuel, E. P., K. Talele, U. Zope, and D. S. Patil, "Semiclassical analysis of capture in Gallium Nitride quantum wells," Optoelectronics and Advanced Materials-Rapid Communications, Vol. 5, 221, 2007.

    11. Shwetanshumala, S. Jana and S. Konar, "Propagation of a mixture of modes of a laser beam in a medium with saturable nonlinearity," J. of Electromagn. Waves and Appl., Vol. 20, 65, 2006.

    12. Mora-Ramos, M. E., R. Perez-Alvarez, and V. R. Velasco, "The electrostatic potential associated to interface phonon modes in Nitride single heterostructures," Progress In Electromagnetics Research Letters, Vol. 1, 27, 2008.

    13. Hori, A., D. Yasunaga, A. Satake, and K. Fujiwara, "Temperature and injection current dependence of electroluminescence intensity in green and blue InGaN single quantum well light emitting diodes," J. of Applied Physics, Vol. 93, 3152, 2003.

    14. Schwarz, U. T., E. Sturm, W. Wegscheider, V. Kummler, A. Lell, and V. Harle, "Excitonic signature in gain and carrier induced change of refractive index spectra of (In,Al)GaN quantum well lasers," Applied Physics Letters, Vol. 85, 1475, 2004.

    15. Chern, G. D., H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, "Unidirectional lasing from InGaN multiple quantum well spiral-shaped micropillars," Applied Physics Letters, Vol. 83, 1710, 2003.

    16. Mamishev, A. V., K. S. Rajan, F. Yang, Y. Du, and M. Zahn, "Interdigital sensors and transducers," Proceedings of the IEEE, Vol. 92, 808, 2004.

    17. Srivastav, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197, 2008.

    18. Walpita, L. M., "Solutions for planar optical waveguide equations by selecting zero elements in a characteristic matrix," J. Opt. Soc. Amer. A, Vol. 2, 595, 1985.

    19. Brennan, K. E. and C. J. Summers, "Theory of resonant tunneling in a variably spaced multiquantum well structure: An airy function approach," J. Appl. Phys., Vol. 61, 614, 1987.

    20. Ghatak, A. K., K. Thyagarajan, and M. R. Shenoy, "A novel numerical technique for solving the one-dimensional Schrodinger equation using matrix approach application to quantum well structures," IEEE J. Quantum Electron., Vol. 24, 1524, 1988.

    21. Lu, J., B. I. Wu, J. A. Kong, and M. Chen, "Guided modes with a linearly varying transverse field inside a left-handed dielectric slab," J. of Electromagn. Waves and Appl., Vol. 20, No. 5, 689, 2006.

    22. Gaggero-Sager, L. M., N. Moreno-Martinez, I. Rodriguez-Vargas, R. Perez-Alvarez, V. V. Grimalsky, and M. E. Mora-Ramos, "Electronic structure as a function of temperature for Si δ-doped quantum wells in GaAs," PIERS Online, Vol. 3, No. 6, 851, 2007.

    23. Gaggero-Sager, L. M. and I. Rodriguez-Vargas, "p-n-p δ-doped QuantumWells in GaAs," PIERS Online, Vol. 3, No. 6, 855, 2007.

    24. Chen, C.-N., K.-F. Yarn, W.-C. Chien, S.-H. Chang, and M.-L. Hung, "Interface heterobond effects in (hkl) InAs/GaSb superlattice solved by bond orbital model," Progress In Electromagnetics Research Symposium, 318, Hangzhou, China, August 22-26, 2005.

    25. Jancewicz, B., "Plane electromagnetic wave in PEMC," J. of Electromagn. Waves and Appl., Vol. 20, No. 5, 647, 2006.

    26. Wu, C.-J., "Transmission and reflection in a periodic superconductor/dielectric film multilayer structure," Progress In Electromagnetics Research Symposium, 164, Hangzhou, China, August 22-26, 2005.