Vol. 2

Latest Volume
All Volumes
All Issues

Stark Effect in P-Type Delta-Doped Quantum Wells

By Adelina Miteva, Stoyan Vlaev, and Vesselin Donchev
Progress In Electromagnetics Research Letters, Vol. 2, 45-52, 2008


In this work tight binding calculations in Be δ-doped GaAs quantum wells with an electric field applied along the [001] growth direction are presented. The Stark shifts of the hole electronic states for different impurity concentrations and electric field strengths are calculated. The δ-potential is treated as an external potential following the approach described earlier. A comparison with Stark effects in rectangular and graded-gap quantum wells is made.


Adelina Miteva, Stoyan Vlaev, and Vesselin Donchev, "Stark Effect in P-Type Delta-Doped Quantum Wells," Progress In Electromagnetics Research Letters, Vol. 2, 45-52, 2008.


    1. Wagner, J., A. Ruiz, and K. Ploog, "Fermi-edge singularity and band-filling effects in the luminescence spectrum of Be-δ-doped GaAs," Phys. Rev. B, Vol. 43, 12134-12137, 1991.

    2. Richards, D., J. Wagner, H. Schneider, G. Hendorfer, and M. Maier, "Two-dimensional hole gas and Fermi-edge singularity in Be δ-doped GaAs," Phys. Rev. B, Vol. 47, 9629-9640, 1993.

    3. Sipahi, G. M., R. Enderlein, L. M. R. Scolfaro, and J. R. Leite, "Band structure of holes in p-type δ-doping quantum wells and superlattices," Phys. Rev. B, Vol. 53, 9930-9942, 1996.

    4. Ben Jazia, A., H. Mejri, H. Maaref, and K. Souissi, "Stark effect studied in δ-doped GaAs structures," Semicond. Sci. Technol., Vol. 12, 1388-1395, 1997.

    5. Vlaev, S. and L. M. Gaggero Sager, "Thomas-Fermi approximation in a tight-binding calculation of δ-doped quantum wells in GaAs," Phys. Rev. B, Vol. 58, 1142-1145, 1998.

    6. Ozturk, E. and I. Sokmen, "Intersubband optical absorption in Si δ-doped GaAs for the donor distribution and thickness as dependent on the applied electric field," EPJ Appl. Phys., Vol. 25, 3-9, 2004.

    7. Osvald, J., "Electronic properties of a near surface Si δ-doped GaAs under an applied electric field," J. Phys. D: Appl. Phys., Vol. 37, 2655-2659, 2004.

    8. Gaggero-Sager, L. M., M. E. Mora-Ramos, and M. A. Olivares-Robles, "Calculation of electronic properties in AlxGa1-xAs delta-doped systems," Microelectronics J., Vol. 36, 416-418, 2005.

    9. Singh, J., Physics of Semiconductors and Heterostructures, McGraw-Hill Book Co., Inc., Singapore, 1993.

    10. Di Carlo, A., P. Vogl, and W. Potz, "Theory of Zener tunneling and Wannier-Stark states in semiconductors," Phys. Rev. B, Vol. 50, 8358-8377, 1994.

    11. Vlaev, S. J., A. M. Miteva, D. A. Contreras-Solorio, and V. R. Velasco, "Stark effect in rectangular and graded gap quantum wells," Surf. Sci., Vol. 424, 331-338, 1999.

    12. Vlaev, S. J., A. M. Miteva, D. A. Contreras-Solorio, and V. R. Velasco, "Stark effect in diffused quantum wells," Superlat. Microstruct., Vol. 26, 325-332, 1999.

    13. Vlaev, S., V. R. Velasco, and F. Garcia-Moliner, "Electronic states in graded-composition heterostructures," Phys. Rev. B, Vol. 49, 11222-11229, 1994.

    14. Boykin, T. B., G. Klimeck, R. Ch. Bowen, and R. Lake, "Effective-mass reproducibility of the nearest-neighbor sp3s* models: Analytic results," Phys. Rev. B, Vol. 56, 4102-4107, 1997.