Vol. 3

Latest Volume
All Volumes
All Issues
2008-02-05

Temporal Solitons of Modified Complex Ginzberg Landau Equation

By Sahay Shwetanshumala
Progress In Electromagnetics Research Letters, Vol. 3, 17-24, 2008
doi:10.2528/PIERL08010401

Abstract

In this paper we have reported soliton solution of one dimensional modified complex Ginzburg Landau equation. The parametric region where such soliton solution is possible is also identified.

Citation


Sahay Shwetanshumala, "Temporal Solitons of Modified Complex Ginzberg Landau Equation," Progress In Electromagnetics Research Letters, Vol. 3, 17-24, 2008.
doi:10.2528/PIERL08010401
http://test.jpier.org/PIERL/pier.php?paper=08010401

References


    1. Hasegawa, A., Plasma Instabilities and Nonlinear Effects, Springer Verlag, Berlin, 1975.

    2. Mishra, M. and S. Konar, Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2049-2058, 2007.
    doi:10.1163/156939307783152830

    3. Shwetanshumala, S., A. Biswas, and S. Konar, "Dynamically stable supergaussian solitons in semiconductor doped glass fibers," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 901-912, 2006.
    doi:10.1163/156939306776149888

    4. Biswas, A., S. Konar, and E. Zerrad, "Soliton-soliton interaction with parabolic law nonlinearity," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 927-939, 2006.
    doi:10.1163/156939306776149833

    5. Konar, S. and A. Biswas, "Soliton-soliton interaction with kerr law nonlinearity," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 11, 1443-1453, 2005.
    doi:10.1163/156939305775701859

    6. Konar, S., S. Jana, and S. Shwetanshumala, "Incoherently coupled screening photovoltaic spatial solitons in a biased photovoltaic photo refractive crystals," Optics Communications, Vol. 273, 324-333, 2007.
    doi:10.1016/j.optcom.2007.01.051

    7. Konar, S., M. Mishra, and S. Jana, "Nonlinear evolution of cosh-Gaussian laser beams and generations of flat top spatial solitons in cubic quintic nonlinear media ," Physics Letts. A, Vol. 362, 505-510, 2007.
    doi:10.1016/j.physleta.2006.11.025

    8. Biswas, A., "Stochastic perturbation of parabolic law optical solutions," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1479-1488, 2007.

    9. Mandal, B. and A. R. Chowdhury, "Spatial soliton scattering in a quasi phase matched quadratic media in presence of cubic nonlinearity," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 123-135, 2007.
    doi:10.1163/156939307779391704

    10. Crutcher, S., A. Biswas, M. D. Aggrawal, and M. E. Edwards, "Oscillatory behaviour of spatial solitons in two dimensional waveguides and stationary temporal power law solitons in optical fibers," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 761-772, 2006.
    doi:10.1163/156939306776143361

    11. Jana, S. and S. Konar, "Tunable spectral switching in the far field with a chirped cosh-gaussian pulse," Optics Communications, Vol. 267, 24-31, 2006.
    doi:10.1016/j.optcom.2006.06.013

    12. Konar, S. and S. Jana, "Linear and nonlinear propagation of sinh-Gaussian pulses in dispersive media possessing Kerr nonlinearity," Optics Communication, Vol. 236, No. 1-3, 7-20, 2004.
    doi:10.1016/j.optcom.2004.03.012

    13. Konar, S., J. Kumar, and P. K. Sen, "Suppression of soliton instability by higher order nonlinearity in long-haul optical communication systems," J. Nonlinear Optical Physics & Materials, Vol. 8, 492, 1999.

    14. Konar, S. and A. Sengupta, "Propagation of an elliptic Gaussian laser beam in a medium with saturable nonlinearity," J. Opt. Soc. Am B, Vol. 11, 1644, USA, 1994.
    doi:10.1364/JOSAB.11.001644

    15. Kaup, D. J. and A. C. Newell, "An exact solution for a derivative nonlinear Schrodinger equation," J. Math Phys., Vol. 19, 798, 1978.
    doi:10.1063/1.523737

    16. Hirota, R., "Exact N soliton solution of the wave equation of long waves in shallow water and in nonlinear lattices," J. Math Phys., Vol. 14, 805, 1973.
    doi:10.1063/1.1666399

    17. Anderson, D., "Variational approach to nonlinear pulse propagation in optical fibers," Phys. Rev. A, Vol. 27, 3135, 1983.
    doi:10.1103/PhysRevA.27.3135

    18. Malomed, B., D. Anderson, M. Lisak, and M. L. Quiroga-Teixeiro, "Dynamics of solitary waves in the Zakharov model equations," Phy. Rev. E, Vol. 55, 962, 1997.
    doi:10.1103/PhysRevE.55.962

    19. Dinda, P. T., A. B. Moubissi, and K. Nakkeeran, "Letter to the editor: A collective variable approach for dispersion managed solitons," J. Phys. A: Math. Gen., Vol. 34, L103, 2001.
    doi:10.1088/0305-4470/34/10/104

    20. Biswas, A., "Dynamics of stochastic optical solitons," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 2, 145-152, 2004.
    doi:10.1163/156939304323062004

    21. He, J. H., "Approximate analytical solution for seepage flow with fractional derivatives in porus media," Comput. Meth. Appl. Mech.Eng., Vol. 167, No. 12, 57, 1998.
    doi:10.1016/S0045-7825(98)00108-X

    22. Acunto, M. D., "Self excited systems: Analytical determination of limit cycles," Chaos, Solitons Fractals, Vol. 30, No. 3, 719, 2006.
    doi:10.1016/j.chaos.2006.03.070

    23. Moores, J. D., "On the Ginzburg-Landau laser mode-locking model with fifth order saturable absorber term," Opt. Comm., Vol. 96, 65, 1993.
    doi:10.1016/0030-4018(93)90524-9

    24. Akhmediev, N. N., V. V. Afanasjev, and J. M. Soto-Crespo, "Singularities and special soliton solutions of the cubic quintic complex Ginzburg Landau equation," Phys. Rev. E, Vol. 53, 1190, 1996.
    doi:10.1103/PhysRevE.53.1190

    25. Akhmediev, N. N., J. M. Soto-Crespo, and A. Town, "Pulsating solitons, chaotic solitons, period doubling and pulse co-existence in mode-locked lasers: Complex Ginzburg Landau equation approach," Phys. Rev. E, Vol. 63, 056602, 2001.
    doi:10.1103/PhysRevE.63.056602

    26. Yomba, E. and T. C. Kofane, "Exact solutions of the onedimensional modified complex Ginzburg Landau equation," Chaos, Solitons and Fractals, Vol. 15, 197, 2003.

    27. Mohamddou, A., A. K. Jiotsa, and T. C. Kofane, "Pattern selection and modulation instability in the one dimensioal modified complex Ginzburg Landau equation," Chaos, Solitons and Fractals, Vol. 24, 957, 2005.
    doi:10.1016/j.chaos.2004.09.106

    28. Hong, W. P., "Stable stationary solitons of the one dimensional modified complex Ginzburg Landau equation," Z. Naturforsch, Vol. 62a, 373, 2007.

    29. Panajotovic, A., D. Milovic, and A. Biswas, "Influence of even order dispersion on soliton transmission quality with coherent interference," Progress In Electromagnetics Research B, Vol. 3, 63-72, 2008..
    doi:10.2528/PIERB07120404

    30. Ballav, M. and A. R. Chowdhury, "On a study of diffraction and dispersion managed soliton in a cylindrical media," Progress In Electromagnetics Research, Vol. 63, 33-50, 2006.
    doi:10.2528/PIER06051601

    31. Singh, S. P. and N. Singh, "Nonlinear effects in optical fibers: Origin, management and applications," Progress In Electromagnetics Research, Vol. 73, 249-275, 2007.
    doi:10.2528/PIER07040201

    32. Singh, S. P., R. Gangwar, and N. Singh, "Nonlinear scattering effects in optical fibers," Progress In Electromagnetics Research, Vol. 74, 379-405, 2007.
    doi:10.2528/PIER07051102

    33. Gangwar, R., S. P. Singh, and N. Singh, "Soliton based optical communication," Progress In Electromagnetics Research, Vol. 74, 157-166, 2007.
    doi:10.2528/PIER07050401