Vol. 6

Latest Volume
All Volumes
All Issues
2009-02-11

Compact 2-D Full-Wave Order-Marching Time-Domain Method with a Memory-Redued Technique

By Wei Shao, Sheng-Jian Lai, and Ting-Zhu Huang
Progress In Electromagnetics Research Letters, Vol. 6, 157-164, 2009
doi:10.2528/PIERL08111811

Abstract

This paper describes a memory-reduced (MR) compact two-dimensional (2-D) order-marching time-domain (OMTD) method for full-wave analyses. To reduce memory requirements in the OMTD method, the divergence theorem is introduced to obtain a memory-efficient matrix equation. A lossy microstrip line is presented to validate the accuracy and efficiency of our algorithm.

Citation


Wei Shao, Sheng-Jian Lai, and Ting-Zhu Huang, "Compact 2-D Full-Wave Order-Marching Time-Domain Method with a Memory-Redued Technique," Progress In Electromagnetics Research Letters, Vol. 6, 157-164, 2009.
doi:10.2528/PIERL08111811
http://test.jpier.org/PIERL/pier.php?paper=08111811

References


    1. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The finite-difference Time-Domain Method, 2nd Ed., Artech House, Boston, 2000.

    2. Ali, M. and S. Sanyal, "FDTD analysis of dipole antenna as EMI sensor," Progress In Electromagnetics Research, Vol. 69, 341-359, 2007.
    doi:10.2528/PIER06122801

    3. Chen, Z.-H. and Q.-X. Chu, "FDTD modeling of arbitrary linear lumped networks using piecewise linear recursive convolution technique," Progress In Electromagnetics Research, Vol. 73, 327-341, 2007.
    doi:10.2528/PIER07042002

    4. Lei, J.-Z., C.-H. Liang, and Y. Zhang, "Study on shielding effectiveness of metallic cavities with apertures by combining parallel FDTD method with windowing technique," Progress In Electromagnetics Research, Vol. 74, 85-112, 2007.
    doi:10.2528/PIER07041905

    5. Xiao, S.-Q., B.-Z.Wang, P. Du, and Z. Shao, "An enhanced FDTD model for complex lumped circuits," Progress In Electromagnetics Research, Vol. 76, 485-495, 2007.
    doi:10.2528/PIER07073003

    6. Shreim, A. M. and M. F. Hadi, "Integral PML absorbing boundary conditions for the high-order M24 FDTD algorithm," Progress In Electromagnetics Research, Vol. 76, 141-152, 2007.
    doi:10.2528/PIER07070303

    7. Afrooz, K., A. Abdipour, A. Tavakoli, and M. Movahhedi, "Time domain analysis of active transmission line using FDTD technique (application to microwave/MM-wave transistors)," Progress In Electromagnetics Research, Vol. 77, 309-328, 2007.
    doi:10.2528/PIER07081401

    8. Hu, X.-J. and D.-B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
    doi:10.2528/PIER07101902

    9. Su, D. Y., D.-M. Fu, and Z.-H. Chen, "Numerical modeling of active devices characterized by measured S-parameters in FDTD," Progress In Electromagnetics Research, Vol. 80, 381-392, 2008.
    doi:10.2528/PIER07120902

    10. Mohammad Amjadi, S. and M. Soleimani, "Design of band-pass waveguide filter using frequency selective surfaces loaded with surface mount capacitors based on split-field update FDTD method," Progress In Electromagnetics Research B, Vol. 3, 271-281, 2008.
    doi:10.2528/PIERB07122402

    11. Khajehpour, A. and S. A. Mirtaheri, "Analysis of pyramid EM wave absorber by FDTD method and comparing with capacitance and homogenization methods," Progress In Electromagnetics Research Letters, Vol. 3, 123-131, 2008.
    doi:10.2528/PIERL08021802

    12. Xiao, S., R. Vahldieck, and H. Jin, "Full-wave analysis of guided wave structures using a novel 2-D FDTD," IEEE Microwave Guided Wave Lett., Vol. 2, No. 5, 165-167, 1992.
    doi:10.1109/75.134342

    13. Xiao, S. and R. Vahldieck, "An effcient 2-D FDTD algorithm using real variables," IEEE Microwave Guided Wave Lett., Vol. 3, No. 5, 127-129, 1993.
    doi:10.1109/75.217204

    14. Chung, Y.-S., T. K. Sarkar, B. H. Jung, and M. Salazar-Palma, "An unconditionally stable scheme for the finite-difference time-domain method," IEEE Trans. Microwave Theory and Tech., Vol. 51, No. 3, 697-704, 2003.
    doi:10.1109/TMTT.2003.808732

    15. Shao, W., B.-Z. Wang, X.-H. Wang, and X.-F. Liu, "Effcient compact 2-D time-domain method with weighted Laguerre polynomials ," IEEE Trans. Electromagn. Compat., Vol. 48, No. 3, 442-448, 2006.
    doi:10.1109/TEMC.2006.879332

    16. Shao, W., B.-Z. Wang, and X.-F. Liu, "Complex variable technique in compact 2-D order-marching time-domain method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1453-1460, 2007.
    doi:10.1163/156939307782000280

    17. Kondylis, G. D., F. D. Flaviis, G. J. Pottie, and T. Itoh, "A memory-effcient formulation of the finite-difference time-domain method for the solution of Maxwell equations," IEEE Trans. Microwave Theory and Tech., Vol. 49, No. 7, 1310-1320, 2001.
    doi:10.1109/22.932252

    18. Yi, Y., B. Chen, W.-X. Sheng, and Y.-L. Pei, "A memory-effcient formulation of the unconditionally stable FDTD method for solving maxwell's equations," IEEE Trans. Antennas Propagat. , Vol. 55, No. 12, 3729-3733, 2007.
    doi:10.1109/TAP.2007.910499

    19. Zhao, A. P., J. Juntunen, and A. V. Ralsanen, "A generalized compact 2D FDTD model for the analysis of guided modes of anisotropic waveguides with arbitrary tensor permittivity," Microwave Opt. Technol. Lett., Vol. 18, No. 5, 17-23, 1998.
    doi:10.1002/(SICI)1098-2760(199805)18:1<17::AID-MOP5>3.0.CO;2-L

    20. Fujii, M. and S. Kobayashi, "Compact two-dimensional FD-TD analysis of attenuation properties of lossy microstrip lines," IEEE MTT-S Int. Microwave Symp., 797-800, 1995.