A bidirectional high gain four-element printed dipole array for WLAN (2.4/5.8 GHz) applications is analyzed and successfully implemented in this paper. Each element used is a double-side printed dipole fed with a balance twin-lead transmission line. A wide-band balun is implemented for the dipole array. Both simulated and measured data are pretty matched. According to the measured results, the bandwidth with return loss less than -10 dB is about 280 MHz (2250-2530 MHz) and 510 MHz (5470-5980 MHz) in the two operating bands, the measured gain for 2.4 GHz band is between 4.5 and 5.9 dB, and 6.1-8.9 dB for 5.8 GHz respectively. Good shaped patterns have also been attained by tuning parameters of the dipole array.
2. Wilkinson, W., "A class of printed circuit antennas," IEEE Antennas Propagat. Symp. Dig., 270-274, 1974.
3. Chen, H. M., J. M. Chen, P. S. Cheng, and Y. F. Lin, "Feed for dual-band printed dipole antenna," Electron. Lett., Vol. 40, 1320-1322, 2004.
doi:10.1049/el:20046360
4. Suh, S. Y., A. E. Waltho, L. Krishnamurthy, D. Souza, S. Gupta, H. K. Pan, and V. K. Nair, "A miniaturized dual-band dipole antenna with a modified meander line for laptop computer application in 2.5 and 5.5GHz WLAN band," IEEE Antennas and Propagation Society International Symposium, 2617-2620, 2006.
5. Zhang, Z., M. F. Iskander, J. C. Langer, and J. Mathews, "Dual-band WLAN dipole antenna using an internal matching circuit," IEEE Trans. Antennas Propagat., Vol. 53, 1813-1818, 2005.
doi:10.1109/TAP.2005.846784
6. Su, S. W. and J. H. Chou, "Low cost flat metal-plate dipole antenna for 2.4/5-GHz WLAN operation," Microw. Opt. Tech. Lett., Vol. 50, 1686-1687, 2008.
doi:10.1002/mop.23461
7. Liu, W. C., "Optimal design of dual band CPW-fed G-shaped monopole antenna for WLAN application," Progress In Electromagnetics Research, Vol. 74, 21-38, 2007.
doi:10.2528/PIER07041401
8. Wu, Y. J., B. H. Sun, J. F. Li, and Q. Z. Liu, "Triple-band omni-directional antenna for WLAN application," Progress In Electromagnetics Research, Vol. 76, 477-484, 2007.
doi:10.2528/PIER07080601
9. Wang, F. J. and J. S. Zhang, "Wide band cavity-baked ," Progress In Electromagnetics Research, Vol. 74, 39-46, 2007.
doi:10.2528/PIER07041801
10. Ren, W., "Compact dual-band slot antenna for 2.4/5GHz WLAN applications," Progress In Electrimagnetics Research B, Vol. 8, 319-327, 2008.
doi:10.2528/PIERB08071406
11. Gao, J. P., X. X. Yang, J. S. Zhang, and J. X. Xiao, "A printed volcano smoke antenna for UWB and WLAN communications," Progress In Electromagnetics Research Letters, Vol. 4, 55-61, 2008.
doi:10.2528/PIERL08051102
12. Jolani, F., A. M. Dadgarpour, and H. R. Hassani, "Compact M-slot folded patch antenna for WLAN," Progress In Electromagnetics Research Letters, Vol. 3, 35-42, 2008.
doi:10.2528/PIERL08012801
13. Wu, T. Y., S. T. Fcing, and K. L. Wong, "Printed monopole array antenna for WLAN operation in the 2.4/5.2/5.8GHz bands," Microwave. Opt. Technol. Lett., Vol. 37, 370-373, 2003.
doi:10.1002/mop.10921
14. Lin, C. C., C. M. Su, F. R. Hsiao, and K. L.Wong, "Printed folded dipole array antenna with directional radiation for 2.4/5GHz WLAN operation," Electron. Lett., Vol. 39, No. 24, 2003.
doi:10.1049/el:20031136
15. Gans, M., D. Kajfez, and V. H. Rumsey, "Frequency independent baluns," Proc. IEEE, 647-648, 1965.
doi:10.1109/PROC.1965.3963