Vol. 7

Latest Volume
All Volumes
All Issues
2009-02-16

Three-Dimensional Metamaterial Microwave Absorbers Composed of Coplanar Magnetic and Electric Resonators

By Jiafu Wang, Shaobo Qu, Zhentang Fu, Hua Ma, Yiming Yang, Xiang Wu, Zhuo Xu, and Meijuan Hao
Progress In Electromagnetics Research Letters, Vol. 7, 15-24, 2009
doi:10.2528/PIERL09012003

Abstract

In this paper, a 3-dimensional metamaterial absorber operating at 11.8 GHz was presented. The metamaterial absorber is composed of coplanar magnetic and electric resonators, with the latter in the center part of the former. By carefully adjusting structural dimensions of magnetic and electric resonators, absorbance per unit cell can reach up to 96% at 11.8 GHz with a 6% FWHM (Full Width at Half Maximum). The full-wave simulations confirmed nearly equal permeability and permittivity and large imaginary part of the refractive index at 11.8 GHz and thus proved the effectiveness of the proposed 3-dimensional metamaterial absorber for microwave applications.

Citation


Jiafu Wang, Shaobo Qu, Zhentang Fu, Hua Ma, Yiming Yang, Xiang Wu, Zhuo Xu, and Meijuan Hao, "Three-Dimensional Metamaterial Microwave Absorbers Composed of Coplanar Magnetic and Electric Resonators," Progress In Electromagnetics Research Letters, Vol. 7, 15-24, 2009.
doi:10.2528/PIERL09012003
http://test.jpier.org/PIERL/pier.php?paper=09012003

References


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
    doi:10.1070/PU1968v010n04ABEH003699

    2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
    doi:10.1109/22.798002

    3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
    doi:10.1103/PhysRevLett.84.4184

    4. Lagarkov, A. N., V. N. Kisel, and V. N. Semenenko, "Wide-angle absorption by the use of a metamaterial plate," Progress In Electromagnetics Research Letters, Vol. 1, 35-44, 2008.
    doi:10.2528/PIERL07111809

    5. Ourir, A., A. D. Lustrac, and J.-M. Lourtioz, "All-metamaterial-based subwavelength cavities λ/60 for ultrathin directive antennas," Appl. Phys. Lett., Vol. 88, 084103, 2006.
    doi:10.1063/1.2172740

    6. Alú, A., F. Bilotti, N. Engheta, and L. Vegni, "Sub-wavelength, compact, resonant patch antennas loaded with metamaterials," IEEE Trans. Antennas Propagat., Vol. 55, No. 1, 13-25, 2007.
    doi:10.1109/TAP.2006.888401

    7. Bilotti, F., A. Toscano, L. Vegni, K. B. Alici, K. Aydin, and E. Ozbay, "Equivalent circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 12, 2865-2873, 2007.
    doi:10.1109/TMTT.2007.909611

    8. A., F. Bilotti, N. Engheta, L. Vegni and A conformal omni-directional sub-wavelength metamaterial leaky-wave antenna, "Alú," IEEE Trans. Antennas Propagat., Vol. 55, No. 6, 1698-1708, 2007.
    doi:10.1109/TAP.2007.898615

    9. Xi, S., H. Chen, B.-I. Wu, and J. A. Kong, "Experimental confirmation of guidance properties using planar anisotropic left-handed metamaterial slabs based on S-ring resonators," Progress In Electromagnetics Research, Vol. 84, 279-287, 2008.
    doi:10.2528/PIER08062105

    10. Ran, L., J. Huangfu, H. Chen, X. Zhang, K. Cheng, T. M. Grzegorczyk, T. M. Grzegorczyk, and , "Experimental study on several left-handed metamaterials," Progress in Electromagnetics Research, Vol. 51, 249-279, 2005.
    doi:10.2528/PIER04040502

    11. Wongkasem, N., A. Akyurtlu, and K. A. Marx, "Group theory based design of isotropic negative refractive index metamaterials," Progress In Electromagnetics Research, Vol. 63, 295-310, 2006.
    doi:10.2528/PIER06062103

    12. Wang, J. F., S. B. Qu, Z. Xu, J. Q. Zhang, Y. M. Yang, H. Ma, and C. Gu, "A candidate three-dimensional GHz lefthanded metamaterial composed of coplanar magnetic and electric resonators," Photonics Nanostruct.: Fundam. Appl., Vol. 6, 183-187, 2008.
    doi:10.1016/j.photonics.2008.08.001

    13. Kisel, V. N. and A. N. Lagarkov, "Near-perfect absorption by a flat metamaterial plate," Phys. Rev. E, Vol. 76, 065601, 2007.
    doi:10.1103/PhysRevE.76.065601

    14. Kern, D. J. and D. H. Werner, "A generic algorithm approach to the design of ultra-thin electromagnetic band-gap absorber," Microwave Opt. Tech. Lett., Vol. 38, No. 1, 61-64, 2003.
    doi:10.1002/mop.10971

    15. Chakravarty, S., R. Mittra, and N. R. Williams, "On the pplication of the micro-Genetic Algorithm (MGA) to the design of broadband microwave absorbers comprising frequency selective surface (FSS) embedded in multilayered dielectric media," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 6, 1050-1059, 2001.
    doi:10.1109/22.925490

    16. Bilotti, F., L. Nucci, and L. Vegni, "An SRR based microwave absorber," Opt. Tech. Lett., Vol. 48, No. 11, 2171-2175, 2006.
    doi:10.1002/mop.21891

    17. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, S. Sajuyigbe, J. J. Mock, D. R. Smith, and , "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
    doi:10.1103/PhysRevLett.100.207402

    18. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, No. 10, 7181-7188, 2008.
    doi:10.1364/OE.16.007181

    19. Ahmadi, A. and H. Mosallaei, "Physical configuration and performance modeling of all-dielectric metamaterials," Phys. Rev. B, Vol. 77, 045104, 2008.
    doi:10.1103/PhysRevB.77.045104

    20. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, 036617, 2005.
    doi:10.1103/PhysRevE.71.036617