Vol. 8

Latest Volume
All Volumes
All Issues
2009-05-29

Repeaterless Hybrid CATV/16-Qam OFDM Transport Systems

By Ching-Hung Chang, Tan-Hsu Tan, Hai-Han Lu, Wen-Yi Lin, and Shah-Jye Tzeng
Progress In Electromagnetics Research Letters, Vol. 8, 171-179, 2009
doi:10.2528/PIERL09033107

Abstract

A repeaterless hybrid CATV/16-quadrature amplitude modulation (QAM) orthogonal frequency-division multiplexing (OFDM) transport system employing half-split-band and remote light injection techniques is proposed and demonstrated. Over an 80-km SMF transmission without optical amplification, good performances of carrier-to-noise ratio (CNR), composite second order (CSO), and composite triple beat (CTB) were obtained for CATV band; simultaneous high CNR and low bit error rate (BER) values were achieved for 16-QAM OFDM band. This architecture presents a feasible way to transmit both analog and digital video signals.

Citation


Ching-Hung Chang, Tan-Hsu Tan, Hai-Han Lu, Wen-Yi Lin, and Shah-Jye Tzeng, "Repeaterless Hybrid CATV/16-Qam OFDM Transport Systems," Progress In Electromagnetics Research Letters, Vol. 8, 171-179, 2009.
doi:10.2528/PIERL09033107
http://test.jpier.org/PIERL/pier.php?paper=09033107

References


    1. Tzeng, S. J., H. H. Lu, C. Y. Li, K. H. Chang, and C. H. Lee, "CSO/CTB performance improvement by using Fabry-Perot etalon at the receiving site ," Progress In Electromagnetics Research Letters, Vol. 6, 107-113, 2009.
    doi:10.2528/PIERL08123103

    2. Gebretsadik, H., H. T. Foulk, N. C. Frateschi, W. J. Choi, S. V. Robertson, and A. E. Bond, "Linearised integrated SOAEA modulator for long-haul and FTTH CATV applications at 1.55 μm," Electron. Lett., Vol. 40, 1016-1017, 2004.
    doi:10.1049/el:20045656

    3. Lu, H. H., W. J. Wang, Y. C. Lai, and N. Y. Lin, "Hybrid AMVSB/256-QAM/Internet transport systems in the campus," IEEE Trans. Broadcast., Vol. 49, 103-106, 2003.
    doi:10.1109/TBC.2003.808736

    4. Lu, H. H. and W. S. Tasi, "A hybrid CATV/256-QAM/OC-48 DWDM system over an 80-km LEAF transport," IEEE Trans. Broadcast., Vol. 49, 97-102, 2003.
    doi:10.1109/TBC.2003.808734

    5. Lu, H. H., C. Y. Li, C. H. Lee, Y. C. Hsiao, and H. W. Chen, "Radio-over-fiber transport systems based on DFB LD with main and -1 side modes injection-locked techniques," Progress In Electromagnetics Research Letters, Vol. 7, 25-33, 2009.
    doi:10.2528/PIERL09011604

    6. Chen, Y. K., Y. L. Liu, and C. C. Lee, "Directly modulated 1.55 μm AM-VSB video EDFA-repeated supertrunking system over 110 km standard singlemode fiber using split-band and wavelength division multiplexing technique ," Electron. Lett., Vol. 33, 1400-1401, 1997.
    doi:10.1049/el:19970949

    7. Chang, C. H., L. Chrostowski, C. J. C.-Hasnain, and W.W. Chow, "Study of long-wavelength VCSEl-VCSEL injection locking for 2.5-Gb/s transmission," IEEE Photon. Technol. Lett. , Vol. 14, 1635-1637, 2002.
    doi:10.1109/LPT.2002.803903

    8. Sung, H. K., E. K. Lau, and M. C. Wu, "Optical single sideband modulation using strong optical injection-locked semiconductor lasers," IEEE Photon. Technol. Lett., Vol. 19, 1005-1007, 2007.
    doi:10.1109/LPT.2007.898760

    9. Ryu, H. S., Y. K. Seo, and W. Y. Choi, "Dispersion-tolerant transmission of 155-Mb/s data at 17 GHz using a 2.5-Gb/s-grade DFB laser with wavelength-selective gain from an FP laser diode," IEEE Photon. Technol. Lett., Vol. 16, 1942-1944, 2004.
    doi:10.1109/LPT.2004.829767

    10. Mogensen, F., H. Olesen, and G. Jacobsen, "Locking conditions and stability properties for a semiconductor laser with external light injection," IEEE J. Quantum Electron., Vol. 21, 784-793, 1985.
    doi:10.1109/JQE.1985.1072760

    11. Way, W. I., Broadband Hybrid Fiber/Coax Access System Technologies, No. 6, 160-214, Academic Press, San Diego, 1999.

    12. Cox, C. H., Analog Optical Links Theory and Practice, Vol. 6, 201-261, Cambridge University Press, 2004.

    13. Smith, G. H. and D. Novak, "Broad-band millimeter-wave (38GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects," IEEE Photon. Technol. Lett., Vol. 10, 141-143, 1998.
    doi:10.1109/68.651139