Vol. 9

Latest Volume
All Volumes
All Issues
2009-07-10

A Small 3-D Multi-Band Antenna of "F" Shape for Portable Phones' Applications

By Jwo-Shiun Sun and Sheng-Yi Huang
Progress In Electromagnetics Research Letters, Vol. 9, 183-192, 2009
doi:10.2528/PIERL09052203

Abstract

A small 3-Dimensional (3-D) multi-band antenna of "F" shape is proposed for portable phones' applications. The designed configuration of the proposed antenna is different from traditional Planar Inverted-F Antenna (PIFA) radiators. The proposed antenna has the good characteristics of wide band. The ratio of impedance bandwidth to the central frequencies 2.5 and 5.1 GHz is 28.6 % and 9 %, respectively. It can be applied to Bluetooth (BT) 2.4 GHz and Unlicensed NII - 5 GHz, UNII-1 5.1 ~ 5.25 GHz and UNII-2 5.25 ~ 5.35 GHz. The experimental results have fairly good agreement with the simulation data by High Frequency Structure Simulator (HFSS).

Citation


Jwo-Shiun Sun and Sheng-Yi Huang, "A Small 3-D Multi-Band Antenna of "F" Shape for Portable Phones' Applications," Progress In Electromagnetics Research Letters, Vol. 9, 183-192, 2009.
doi:10.2528/PIERL09052203
http://test.jpier.org/PIERL/pier.php?paper=09052203

References


    1. Hettak, K., G. Delisle, and M. Boulmalf, "A novel integrated antenna for millimeter-wave personal communications systems," IEEE Trans. on Ant. and Propag., Vol. 46, No. 11, 1757-1858, 1998.
    doi:10.1109/8.736643

    2. Talbi, L. and G. Delisle, "Experimental characterization of EHF multipath indoor radio channels," IEEE J. Select. Areas Commun., Vol. 14, 431-440, 1996.
    doi:10.1109/49.490228

    3. Pozar, D. M., Microstrip Antennas — The Analysis and Design of Microstrip Antennas and Arrays, IEEE Press, New York, 1995.

    4. Brian, B. B., K. Wolfgang, O. Teruo, and I. Takahiro, "Comparisons of computed mobile phone induced SAR in the sam phantom to that in anatomically correct models of the human head ," IEEE Trans. on Electrom. Compat., Vol. 48, No. 2, 2006.
    doi:10.1109/TEMC.2006.874083

    5. Kaori, F., W. Soichi, and Y. Yukio, "Dielectric properties of tissue equivalent liquids and their effects on specific absorption rate," IEEE Trans. on Electrom. Compat., Vol. 46, No. 1, 2004.

    6. Akimasa, H., F. Osamu, and S. Toshiyuki, "Correlation between peak spatial-average SAR and temperature increase due to antennas attached to human trunk," IEEE Trans. on Biomedical Engineering, Vol. 53, No. 8, 2006.

    7. Bernardi, P., M. Cavagnaro, S. Pisa, and E. Piuzzi, "Specific absorption rate and temperature increases in the head of a celluarphone user," IEEE Trans. on Microw. Theory and Tech., Vol. 48, No. 7, 1118-1126, 2000.
    doi:10.1109/22.848494

    8. Cooper, J. and V. Hombach, "The specific absorption rate in spherical head model from a dipole with metallic walls nearby," IEEE Trans. on Electrom. Compat., Vol. 40, No. 4, 377-382, 1998.
    doi:10.1109/15.736225

    9. Kawai, H. and K. Ito, "Simple evaluation method of estimating local average SAR," IEEE Trans. on Microw. Theory and Tech., Vol. 52, No. 8, 2021-2029, 2004.
    doi:10.1109/TMTT.2004.832028

    10. Liu, Z. D., P. S. Hall, and D. Wake, "Dual-frequency planar inverted-F antenna," IEEE Trans. on Ant. and Propag., Vol. 45, No. 10, 1451-1458, 1997.
    doi:10.1109/8.633849

    11. Li, Z. and R. S. Yahya, "WHIP-PIFA combination in wireless handset application: A hybrid circuit model and full wave analysis," IEEE Antenna and Propafation Society International Symposium, 2747-2750, 2004.

    12. Rowell, C. R. and R. D. Murch, "A compact pifa suitable for dual-frequency 900/1800-MHz operation," IEEE Trans. on Ant. and Propag., Vol. 46, No. 4, 596-598, 1998.
    doi:10.1109/8.664127

    13. Hadjem, A., D. Lautru, C. Dale, M. F. Wong, V. F. Hanna, and J. Wiart, "Study of specific absorption rate (SAR) induced in two child head models and in adult heads using mobile phones," IEEE Trans. on Microw. Theory and Tech., Vol. 53, No. 1, 4-11, 2005.
    doi:10.1109/TMTT.2004.839343

    14. Chan, K. H., K. M. Chow, L. C. Fung, and S. W. Leung, "SAR of internal antenna in mobile-phone applications," Microwave and Optical Technology Letters, Vol. 45, No. 4, 286-290, 2005.
    doi:10.1002/mop.20797

    15. Li, Z. and Y. R. Samii, "Optimization of PIFA-IFA combination in handset antenna designs," IEEE Trans. on Ant. and Propag., Vol. 53, No. 5, 1770-1778, 2005.
    doi:10.1109/TAP.2005.846807

    16. Sanz-Izquierdo, B., J. C. Batchelor, R. J. Langley, and M. I. Sobhy, "Single and double layer planar multiband pifas," IEEE Trans. on Ant. and Propag., Vol. 54, No. 5, 2006.

    17. Wong, K. L., G. Y. Lee, and T. W. Chiou, "A low-profile planar monopole antenna for multiband operation of mobile handsets," IEEE Trans. on Ant. and Propag., Vol. 51, No. 1, 2003.

    18. Pan, S. G., T. Becks, A. Bahrwas, and I. Wolff, "N antennas and their applications in portable handsets," IEEE Trans. on Ant. and Propag., Vol. 45, No. 10, 1475-1483, 1997.
    doi:10.1109/8.633853

    19. Dopod, , www. Dopodasia.

    20., , http://en.wikipedia.org/wiki/FR4.

    21. Torrumgrueng, D. and S. Lamultree, "Equivalent graphical solutions of terminated conjugately characteristic-impedance transmission lines with non-negative and corresponding negative characteristic resistances," Progress In Electromagnetics Research, Vol. 92, 137-151, 2009.
    doi:10.2528/PIER09031001

    22. Pozar, D. M., Microwave Engineering 2/e, John Wiley, 1998.