Vol. 10

Latest Volume
All Volumes
All Issues

Left-Handed Materials Based on Crystal Lattice Vibration

By Rui Wang, Ji Zhou, Changqing Sun, Lei Kang, Qian Zhao, and Jingbo Sun
Progress In Electromagnetics Research Letters, Vol. 10, 145-155, 2009


An all-dielectric composite route is proposed for the construction of a left-handed material at THz frequency. It is shown that the interaction between the crystal lattice vibration of the polaritonic dielectric and the electromagnetic wave could induce a negative permittivity. By combining the electric inclusion of polaritonic dielectric with the magnetic inclusion based on Mie resonance, the dielectric composite exhibits simultaneously negative permittivity and negative permeability, hence a negative refractive index. Additionally, the simulation results of the electromagnetic coupling between the electric and magnetic inclusions indicate that the behavior of the negative refractive index is closely related to the distance between the two inclusions.


Rui Wang, Ji Zhou, Changqing Sun, Lei Kang, Qian Zhao, and Jingbo Sun, "Left-Handed Materials Based on Crystal Lattice Vibration," Progress In Electromagnetics Research Letters, Vol. 10, 145-155, 2009.


    1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspeki, Vol. 10, 509-514, 1968.

    2. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.

    3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.

    4. Houck, A. A., J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's law," Phys. Rev. Lett., Vol. 90, 137401, 2003.

    5. Shalaev, V. M., W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett., Vol. 30, 3356-3358, 2005.

    5. Shalaev, V. M., W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett., Vol. 30, 3356-3358, 2005.

    6. Padilla, W. J., A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett., Vol. 96, 107401, 2006.

    7. Huang, K. C., M. L. Povinelli, and J. D. Joannopoulos, "Negative effective permeability in polaritonic photonic crystals," Appl. Phys. Lett., Vol. 85, 543, 2004.

    8. O'Brien, S. and J. B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites," J. Phys.: Condens. Matter, Vol. 14, 4035-4044, 2002.

    9. Wheeler, M. S., J. S. Aitchison, and M. Mojahedi, "Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies," Phys. Rev. B, Vol. 72, 193103, 2005.

    10. Schuller, J. A., R. Zia, T. Taubner, and M. L. Brongersma, "Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles," Phys. Rev. Lett., Vol. 99, 107401, 2007.

    11. Peng, L., L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, "Experimental observation of left-handed behavior in an array of standard dielectric resonators," Phys. Rev. Lett., Vol. 98, 157403, 2007.

    12. Zhao, Q., L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, "Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite," Phys. Rev. Lett., Vol. 101, 027402, 2008.

    13. Holloway, C. L., E. F. Kuester, J. B. Jarvis, and P. Kabos, "A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix," IEEE Trans. Antennas Propag., Vol. 51, 2596-2603, 2003.

    14. Vendik, I. B., O. G. Vendik, and M. S. Gashinova, "Artificial dielectric medium possessing simultaneously negative permittivity and magnetic permeability," Tech. Phys. Lett., Vol. 32, 429-433, 2006.

    15. Dewar, G., "A thin wire array and magnetic host structure with n < 0," J. Appl. Phys., Vol. 97, 10Q101, 2005.

    16. Chui, S. T. and L. B. Hu, "Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites," Phys. Rev. B, Vol. 65, 144407, 2002.

    17. Born, M. and K. Huang, Dynamical Theory of Crystal Lattices, Clarendon Press, Oxford, 1954.

    18. Perry, C. H., B. N. Khanna, and G. Rupprecht, "Infrared studies of perovskite titanates," Phys. Rev., Vol. 135, A408-A412, 1964.

    19. Zelezny, V., E. Cockayne, J. Petzelt, M. F. Limonov, D. E. Usvyat, V. V. Lemanov, and A. A. Volkov, "Temperature dependence of infrared-active phonons in CaTiO.3: A combined spectroscopic and first-principles study," Phys. Rev. B, Vol. 66, 224303, 2002.

    20. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley and Sons, New York, 1983.

    21. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.

    22. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, 137404, 2005.

    23. Loh, E., "Optical phonons in BeO crystals," Phys. Rev., Vol. 166, 673-678, 1968.

    24. Zhao, Q., L. Kang, B. Li, and J. Zhou, "Tunable negative refraction in nematic liquid crystals," Appl. Phys. Lett., Vol. 89, 221918, 2006.