Vol. 11

Latest Volume
All Volumes
All Issues
2009-09-20

Multi-Harmonic DC-Bias Network Based on Arbitrarily Width Modulated Microstrip Line

By Samuel Ver-Hoeye, Carlos Vazquez-Antuna, Marta Gonzalez Corredoiras, Miguel Fernandez-Garcia, Luis Herran Ontanon, and Fernando Las Heras Andres
Progress In Electromagnetics Research Letters, Vol. 11, 119-128, 2009
doi:10.2528/PIERL09071605

Abstract

In this work, we present a novel DC-bias network for multiharmonic microwave circuits based on an arbitrarily width-modulated microstrip line. The arbitrary shape of the width-modulated microstrip line is obtained by using multiple microstrip taper sections. The method is illustrated through the design of four different DC-bias networks blocking from 1 to 4 harmonic components of a 2.5 GHz signal. The designs with an optimum shape for the arbitrarily widthmodulated microstrip line have been manufactured and measured, obtaining a good agreement between the simulated and measured behavior.

Citation


Samuel Ver-Hoeye, Carlos Vazquez-Antuna, Marta Gonzalez Corredoiras, Miguel Fernandez-Garcia, Luis Herran Ontanon, and Fernando Las Heras Andres, "Multi-Harmonic DC-Bias Network Based on Arbitrarily Width Modulated Microstrip Line," Progress In Electromagnetics Research Letters, Vol. 11, 119-128, 2009.
doi:10.2528/PIERL09071605
http://test.jpier.org/PIERL/pier.php?paper=09071605

References


    1. Vazquez, C., S. Ver Hoeye, G. Leon, M. Fernandez, L. F. Herran, and F. Las Heras, "Transmitting polarization agile microstrip antenna based on injection locked oscillators," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17-18, 2427-2437, 2008.
    doi:10.1163/156939308787543831

    2. Ver Hoeye, S., C. Vazquez, M. Fernandez, L. F. Herran, and F. Las Heras, "Receiving phased antenna array based on injection-locked harmonic self-oscillating mixers," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 3, 645-651, 2009.
    doi:10.1109/TAP.2009.2013439

    3. Ver Hoeye, S., F. Ramirez, and A. Suarez, "Nonlinear optimization tools for the design of high-efficiency microwave oscillators," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 5, 189-191, 2004.
    doi:10.1109/LMWC.2004.827869

    4. Herran, L. F., S. Ver Hoeye, and F. Las Heras, "Nonlinear optimization tools for the design of microwave high-conversion gain harmonic self-oscillating mixers," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 1, 16-18, 2006.
    doi:10.1109/LMWC.2005.861357

    5. Fernandez, M., S. Ver Hoeye, L. F. Herran, and F. Las Heras, "Nonlinear optimization of wide-band harmonic self-oscillating mixers," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 5, 347-349, 2008.

    6. Fernandez, M., S. Ver Hoeye, L. F. Herran, and F. Las Heras, "Design of high-gain wide-band harmonic self-oscillating mixers," International Journal of Circuit Theory and Applications, 2009.

    7. Ver Hoeye, S. , L. F. Herran, M. Fernandez, and F. Las Heras, "Design and analysis of a microwave large-range variable phase-shifter based on an injection-locked harmonic self-oscillating mixer," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 6, 342-344, 2006.
    doi:10.1109/LMWC.2006.875623

    8. Ver Hoeye, S., M. Gonzalez, M. Fernandez, C. Vazquez, L. F. Herran, and F. Las Heras, "Harmonic optimization of rationally synchronized oscillators," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 5, 317-319, 2009.
    doi:10.1109/LMWC.2009.2017604

    9. Giannini, F., C. Paoloni, and M. Ruggieri, "CAD-oriented lossy models for radial stubs," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 2, 305-313, 1988.
    doi:10.1109/22.3519

    10. Sorrentino, R. and L. Roselli, "A new simple and accurate formula for microstrip radial stub," IEEE Microwave and Guided Wave Letters, Vol. 2, No. 12, 480-482, 1992.
    doi:10.1109/75.173401

    11. Shamsinejad, S., M. Soleimani, M. Tayarani, and N. Komjani, "Novel even harmonic mixer for 3G movile receivers," Progress In Electromagnetics Research M, Vol. 1, 69-77, 2008.
    doi:10.2528/PIERM08012703

    12. Liang, J. and H. Y. D. Yang, "Varactor loaded tunable printed PIFA," Progress In Electromagnetics Research B, Vol. 15, 113-131, 2009.
    doi:10.2528/PIERB09041108

    13. Nair, N. V. and A. K. Mallick, "An analysis of a width-modulated microstrip periodic structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 2, 200-204, 1984.
    doi:10.1109/TMTT.1984.1132646

    14. Lyons, W. G., R. S. Withers, J. M. Hamm, and A. C. Anderson, "High-Tc superconductive line structures and signal conditioning networks," IEEE Transactions on Magnetics, Vol. 27, No. 2, 2932-2935, 1991.
    doi:10.1109/20.133823

    15. Cheung, H. C. H., M. Holroyd, F. Huang, M. J. Lancaster, B. Aschermann, M. Getta, G. Mller, and H. Schlick, "125% bandwidth superconducting chirp filters," IEEE Transactions on Applied Superconductivity, Vol. 7, No. 2, 2359-2362, 1997.
    doi:10.1109/77.621713

    16. Laso, M. A. G., T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, "Chirped delay lines in microstrip technology," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 12, 486-488, 2001.
    doi:10.1109/7260.974554

    17. Rao, X. S., L. Chen, C. Y. Tan, J. Lu, and C. K. Ong, "Design of one-dimensional microstrip bandstop filters with continuous patterns based on fourier trasform," IEE Electronics Letters, Vol. 39, No. 1, 64-65, 2003.
    doi:10.1049/el:20030082

    18. Laso, M. A. G., T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, M. A. Muriel, M. Sorolla, and M. Guglielmi, "Real-time spectrum analysis in microstrip technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 705-717, 2003.
    doi:10.1109/TMTT.2003.808741

    19. Schwartz, J. D., J. Azaa, and D. V. Plant, "A fully electronic system for the time magnification of ultra-wideband signals," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 2, 327-334, 2007.
    doi:10.1109/TMTT.2006.890069

    20. Schwartz, J. D., M. M. Guttman, J. Azaa, and D. V. Plant, "Multichannel filters using chirped bandgap structures in microstrip technology," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 8, 577-579, 2007.
    doi:10.1109/LMWC.2007.901765