Vol. 12

Latest Volume
All Volumes
All Issues
2009-10-03

Method for Broadening the Beamwidths of Crossed Dipole for Wideband Marine GPS Applications

By Yun-Fei Wei, Bao-Hua Sun, Chao Shi, Shi-Gang Zhou, Wei-Ji Huang, and Qi-Zhong Liu
Progress In Electromagnetics Research Letters, Vol. 12, 31-40, 2009
doi:10.2528/PIERL09090303

Abstract

In this paper, a method to broaden the beamwidths of a crossed dipole antenna is proposed. By introducing four parasitic strips around the crossed dipole antenna, the beamwidths of the crossed dipole antenna in the vertical plane are broadened effectively, making the patterns uniform over a wide frequency band. An L-band prototype, operating in the frequency range from 1.1 GHz to 1.6 GHz, is fabricated and tested. The simulated and measured results show that the beamwidths at lower frequencies are broadened and uniform radiation patterns over the whole operating frequency band are obtained, making the crossed dipole suitable for wideband marine GPS (Global Positioning System) applications.

Citation


Yun-Fei Wei, Bao-Hua Sun, Chao Shi, Shi-Gang Zhou, Wei-Ji Huang, and Qi-Zhong Liu, "Method for Broadening the Beamwidths of Crossed Dipole for Wideband Marine GPS Applications," Progress In Electromagnetics Research Letters, Vol. 12, 31-40, 2009.
doi:10.2528/PIERL09090303
http://test.jpier.org/PIERL/pier.php?paper=09090303

References


    1. Shumaker, P. K., C. H. Ho, and K. B. Smith, "Printed half-wavelength quadrifilar helix antenna for GPS marine applications," Electronics Letters, Vol. 32, No. 3, Feb. 1996.
    doi:10.1049/el:19960129

    2. Florian, P. and D. Loffler W. Wiesbeck, A broadband, ship based, electronically steered L-band SATCOM antenna, Antennas and Propagation Society International Symposium, Vol. 2, 456-459, Jun. 22-27, 2003.

    3. Mall, L. and R. B. Waterhouse, "Simple, small antenna terminal for maritime satellite communications," Electronic Letters, Vol. 40, No. 11, 2004.
    doi:10.1049/el:20040462

    4. Panahi, S. S., A. Manuel, and S. Ventosa, "Stability and power consumption tests for time base selection of an ocean bottom seismometer (OBS)," 49th IEEE International Midwest Symposium on Circuits and Systems, Vol. 2, 323-326, Aug. 2006.
    doi:10.1109/MWSCAS.2006.382277

    5. Gaer, M. C., R. P. Gilbert, and Y. S. Xu, "Analytical methods for acoustic seabed exploration," Challenges of Our Changing Global Environment Conference Proceedings IEEE, Vol. 1, 214-220, Oct. 1995.

    6. Kuga, Y., J. Cha, and J. A. Ritcey, "Mechanically steerable antennas using dielectric phase shifters," IEEE Antennas and Propagation Society International Symposium, Vol. 1, 161-164.

    7. Geissler, M., F. Woetzel, M. Bottcher, S. Korthoff, A. Lauer, M. Eube, and R. Gieron, Innovative phased array antenna for maritime satellite communications, 3rd European Conference on Antennas and Propagation, 735-739, Mar. 2009.

    8. Milligan, T. A., Modern Antenna Design, 2nd Ed., John Wiley & Sons Inc., Hoboken, New Jersey, 2005.

    9. Yin, W. Y. and L. W. Li, "Radiation patterns of a dipole antenna array on bianisotropic substrates with a soft- and hard-surface: The clari¯cation of the continuous magnetic group of symmetry," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 9, 1173-1189, 1999.
    doi:10.1163/156939399X01447

    10. Chen, X. and K. Huang, "Wideband properties of fractal bowtie dipoles," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1511-1518, 2006.
    doi:10.1163/156939306779274345

    11. Zhou, H. J., Q. Z. Liu, J. F. Li, and J. L. Guo, "A swallow-tailed wideband planar monopole antenna with semi-elliptical base," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 9, 1257-1264, 2007.

    12. Shams, K. M. Z., M. Ali, and H. S. Hwang, "A planar inductively coupled bow-tie slot antenna for WLAN application," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 861-871, 2006.
    doi:10.1163/156939306776149879

    13. Anagnostou, D. E., G. Zheng, S. E. Barbin, M. T. Chryssomallis, J. Papapolymerou, and C. G. Christodoulou, An X-band reconfigurable planar dipole antenna, IEEE MTT International Microwave and Optoelectronics Conf., 654-656.

    14. Scire-Scappuzzo, F. and S. N. Makarov, "A low-multipath wideband GPS antenna with cutoff or non-cutoff corrugated ground plane," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 1, 33-46, Jan. 2009.
    doi:10.1109/TAP.2008.2009655

    15. Lange, J., "Interdigitated stripline quadrature hybrid," IEEE Trans. Microw. Theory Tech., Vol. 17, No. 12, 1150-1151, Dec. 1969.
    doi:10.1109/TMTT.1969.1127115

    16. Andrews, D. P. and C. S. Aitchison, "Wide-band lumped element quadrature 3-dB couplers in microstrip," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 12, 2424-2431, Dec. 2000.
    doi:10.1109/22.898993

    17. HFSS: High Frequency Structure Simulator V. 11 based on the Finite Element Method, Ansoft Corporation.

    18. Eldek, A. A., "Design of double dipole antenna with enhanced usable bandwidth for wideband phased array applications," Progress In Electromagnetics Research, Vol. 59, 1-15, 2006.
    doi:10.2528/PIER06012001

    19. Li, B., K.-J. Lee, H.-T. Chou, and W. Gu, "A polarization compensation approach utilizing a paraboloid photonic-crystal structure for crossed-dipole excited reflector antennas," Progress In Electromagnetics Research, Vol. 85, 393-408, 2008.
    doi:10.2528/PIER08081703

    20. Joardar, S. and A. B. Bhattacharya, "Uniform gain power-spectrum antenna-pattern theorem and its possible applications," Progress In Electromagnetics Research, Vol. 77, 97-110, 2007.
    doi:10.2528/PIER07080102

    21. Heidari, A. A., M. Heyrani, and . Nakhkash, "A dual-band circularly polarized stub loaded microstrip patch antenna for GPS applications," Progress In Electromagnetics Research, Vol. 92, 195-208, 2009.
    doi:10.2528/PIER09032401