Vol. 13

Latest Volume
All Volumes
All Issues
2010-02-22

A New Miniaturized Fractal Frequency Selective Surface with Excellent Angular Stability

By Jin-Yuan Xue, Shu-Xi Gong, Peng-Fei Zhang, Wei Wang, and Fei-Fei Zhang
Progress In Electromagnetics Research Letters, Vol. 13, 131-138, 2010
doi:10.2528/PIERL10010804

Abstract

A new miniaturized bandpass fractal frequency selective surface (FSS) with excellent angular stability performa nce is proposed. The minia turization has been achieved by scheming out a symmetric fractal pattern of continuous slots from the surface of a square-shaped patch, in which each periodic cell consists of incurved slot resonator for reducing the cell size. Reduction in FSS size of up to 74% with respect to the conventional square loop aperture FSS operating at the same frequency of 3.3 GHz is obtained. Furthermore, results show excellent angular stability for both vertica land horizontal polarization at different incidence angles because of its fractal configuration. A prototype is fabricated and the FSS measurement, and simulation results are presented and discussed.

Citation


Jin-Yuan Xue, Shu-Xi Gong, Peng-Fei Zhang, Wei Wang, and Fei-Fei Zhang, "A New Miniaturized Fractal Frequency Selective Surface with Excellent Angular Stability," Progress In Electromagnetics Research Letters, Vol. 13, 131-138, 2010.
doi:10.2528/PIERL10010804
http://test.jpier.org/PIERL/pier.php?paper=10010804

References


    1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
    doi:10.1002/0471723770

    2. Lee, S. W., et al., Design for the MDRSS tri band reflector antenna, 1991 IEEE AP-S International Symposium, 666-669, Ontario, Canada, 1991.

    3. Ueno, K., et al., Characteristics of FSS for a multi-band communication satellite, 1991 IEEE AP-S International Symposium, Ontario, Canada, 1991.

    4. Lee, D. H., Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, "Directivity enhancement of circular polarized patch antenna using ring-shaped frequency selective surface superstrate," Microwave Opt. Technol. Lett., Vol. 49, 2007.

    5. Liu, Z. G., W. X. Zhang, D. L. Fu, Y. Y. Gu, and Z. C. Ge, "Broadband faby-perot resonator printed antennas using FSS superstrate with dissimilar size," Microwave Opt. Technol. Lett., Vol. 50, 2008.
    doi:10.1002/mop.23168

    6. Kiani, G. I., A. R. Weily, and K. P. Esselle, "A novel absorb/transmit FSS for secure indoor wireless networks with reduced multipath fading," IEEE Microw. Wireless Compon. Lett., Vol. 16, 378-380, 2006.
    doi:10.1109/LMWC.2006.875589

    7. Kiani, G. I., K. L. Ford, K. P. Esselle, A. R. Weily, and C. J. Panagamuwa, "Oblique incidence performance of a novel frequency selective surface absorber," IEEE Trans. Antennas Propag., Vol. 55, 2931-2934, 2007.
    doi:10.1109/TAP.2007.905980

    8. Kiani, G. I., K. P. Esselle, K. L. Ford, A. R. Weily, and C. Panagamuwa, "Angle and polarization-independent bandstop frequency selective surface for indoor wireless systems," Microwave Opt. Technol. Lett., Vol. 50, 2315-2317, 2008.
    doi:10.1002/mop.23654

    9. Xu, R. R., Z. Y. Zong, G. Yang, and W. Wu, "Loaded frequency selective surfaces using substrate integrated waveguide technology," Microwave Opt. Technol. Lett., Vol. 50, 3149-3152, 2008.
    doi:10.1002/mop.23945

    10. Raspopoulos, M. and S. Stavrou, "Frequency selective surfaces on building materials-air gap impact," Electronics Letters, Vol. 43, No. 13, June 21, 2007.

    11. Huang, J., T.-K. Wu, and S.-W. Lee, "Tri-band frequency selective surface with circular element," IEEE Trans. Antennas Propag., Vol. 42, 166-175, 1994.
    doi:10.1109/8.277210