Vol. 18

Latest Volume
All Volumes
All Issues

Electric Charges That Behave as Magnetic Monopoles

By Yusuf Ziya Umul
Progress In Electromagnetics Research Letters, Vol. 18, 19-28, 2010


The memristor theory of Chua [1] provides a connection with the charge and magnetic flux in an electric circuit. We define a similar relation for the electric and magnetic flux densities in electromagnetism. Such an attempt puts forward interesting results. For example, the magnetic charges do not exist in nature however the electric charges behave as the magnetic monopoles in special media. We support our theory with results of the recent experiments on materials named as spin ice.


Yusuf Ziya Umul, "Electric Charges That Behave as Magnetic Monopoles," Progress In Electromagnetics Research Letters, Vol. 18, 19-28, 2010.


    1. Chua, L. O., "Memristor --- The missing circuit element," IEEE Trans. Circuit Theory, Vol. 18, No. 5, 507-519, 1971.

    2. Maxwell, J. C., "A dynamical theory of the electromagnetic field," Phil. Trans. R. Soc. Lond., Vol. 155, No. 1, 459-512, 1865.

    3. Kavehei, O., A. Iqbal, Y. S. Kim, K. Eshraghian, S. F. Al-Sarawi, and D. Abbot, "The fourth element: Characteristics, modeling and the electromagnetic theory of the memristor," Proc. R. Soc. A, Vol. 466, No. 8, 2175-2202, 2010.

    4. Strukov, D. B., G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," Nature, Vol. 453, No. 9, 80-83, 2008.

    5. Williams, R., "How we found the missing memristor," IEEE Spectr., Vol. 45, No. 12, 28-35, 2008.

    6. Chua, L. O. and S. M. Kang, "Memristive devices and systems," Proc. IEEE, Vol. 64, No. 2, 209-223, 1976.

    7. Tour, J. M. and T. He, "The fourth element," Nature, Vol. 453, No. 9, 42-43, 2008.

    8. Kumar, M. J., "Memristor --- Why do we have to know all about it?," IETE Tech. Rev., Vol. 26, No. 1, 3-6, 2009.

    9. Di Ventra, M., Y. V. Pershin, and L. O. Chua, "Circuit elements with memory: Memristors, memcapacitors, and meminductors," Proc. IEEE, Vol. 97, No. 10, 1717-1724, 2009.

    10. Castelnovo, C., R. Moessner, and S. L. Sondhi, "Magnetic monopoles in spin ice," Nature, Vol. 451, No. 1, 42-45, 2008.

    11. Quantised singularities in the electromagnetic field, "Dirac, P. A. M.," Proc. R. Soc. Lond. A, Vol. 133, 60-72, 1931.

    12. Vorob'ev, P. V., I. V. Kolokolov, and V. V. Ianovski, "On a new method of search for magnetic monopoles," Astron. Astrophys. Trans., Vol. 19, 675-683, 2000.

    13. Rajasekaran, G., "The discovery of Dirac equation and its impact on present-day physics," Reson., Vol. 6, No. 8, 59-74, 2003.

    14. Mukhi, S., "Dirac's conception of the magnetic monopole, and its modern avatars," Reson., Vol. 8, No. 8, 17-26, 2005.

    15. Born, M. and E. Wolf, Principles of Optics, Cambridge University Press, Cambridge, 2003.

    16. Balanis, C. A., Antenna Theory Analysis and Design, Wiley-Interscience, New Jersey, 2005.

    17. Schelkunoff, S. A., "On diffraction and radiation of electromagnetic waves," Phys. Rev., Vol. 56, No. 4, 308-316, 1939.

    18. Khalaj-Amirhosseini, M., "Analysis of nonuniform transmission lines using the equivalent sources," Progress In Electromagnetics Research, Vol. 71, 95-107, 2007.

    19. Umul, Y. Z., "Improved equivalent source theory," J. Opt. Soc. Am. A, Vol. 26, No. 8, 1798-1804, 2009.

    20. Umul, Y. Z., "Rigorous expressions for the equivalent edge currents," Progress In Electromagnetics Research, Vol. 15, 77-94, 2009.

    21. Wilson, M., "Elementary excitations in spin ice take the form of magnetic monopoles," Phys. Today, Vol. 61, No. 3, 16-19, 2008.

    22. Jaubert, L. D. C. and P. C. W. Holdsworth, "Signature of magnetic monopole and Dirac string dynamics in spin ice," Nature Phys., Vol. 5, No. 6, 258-261, 2009.

    23. Gingras, M. J. P., "Observing monopoles in a magnetic analog of ice," Sci., Vol. 326, No. 5951, 375-376, 2009.

    24. Morris, D. J. P., D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffman, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, "Dirac strings and magnetic monopoles in spin ice Dy2Ti2O7," Sci., Vol. 326, No. 5951, 411-414, 2009.

    25. Kadowaki, H., N. Doi, Y. Aoki, Y. Tabata, T. J. Sato, J. W. Lynn, K. Matsuhira, and Z. Hiroi, "Observation of magnetic monopoles in spin ice ," J. Phys. Soc. Jpn., Vol. 78, No. 10, 103706, 2009.

    26. Volpe, G., "Magnetic break up," Opt. Photon. Focus, Vol. 7, S. 3, 2009.

    27. Castelnovo, C., "Coulomb physics in spin ice: From magnetic monopoles to magnetic currents," ChemPhysChem, Vol. 11, No. 3, 557-559, 2010.

    28. Schuman, A., B. Sothmann, P. Szary, and H. Zabel , "Charge ordering of magnetic dipoles in artificial honeycomb patterns," Appl. Phys. Lett., Vol. 97, No. 2, 022509, 2010.

    29. Wolf, S. A., D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, "Spintronics: A spin-based electronics vision for the future," Science, Vol. 294, No. 5546, 1488-1495, 2001.

    30. Smirl, A. L., M. J. Stevens, R. D. R. Bhat, A. Najmaie, J. E. Sipe, and H. M. van Driel, "Ballistic spin transport without net charge ransport in quantum wells," Semicond. Sci. Technol., Vol. 19, No. 4, S369, 2004.

    31. Zutic, I., J. Fabian, and S. Das Sarma, "Spintronics: Fundamentals and applications," Rev. Mod. Phys., Vol. 76, No. 2, 323-410, 2004.