Vol. 19

Latest Volume
All Volumes
All Issues
2010-11-17

Investigations of Reduction of Mutual Coupling Between Two Planar Monopoles Using Two λ/4 Slots

By Shaoli Zuo, Ying-Zeng Yin, Wei-Jun Wu, Zhi-Ya Zhang, and Jie Ma
Progress In Electromagnetics Research Letters, Vol. 19, 9-18, 2010
doi:10.2528/PIERL10100609

Abstract

This article presents a simple structure for reducing mutual coupling between two diversity planar monopole antennas for WLAN 5.2/5.8 GHz applications. The structure has two λ/4 (λ-wavelength in the substrate) slots cut into the ground plane between the two monopoles. In 0.5 λoo,-wavelength in the air) of the antenna spacing, mutual coupling was -33.3, -21.1 dB at 5.2, 5.8 GHz, respectively. The lowest mutual coupling of -33.3 dB was achieved at 5.2 GHz, which is 20.8 dB improvement over the reference.

Citation


Shaoli Zuo, Ying-Zeng Yin, Wei-Jun Wu, Zhi-Ya Zhang, and Jie Ma, "Investigations of Reduction of Mutual Coupling Between Two Planar Monopoles Using Two λ/4 Slots," Progress In Electromagnetics Research Letters, Vol. 19, 9-18, 2010.
doi:10.2528/PIERL10100609
http://test.jpier.org/PIERL/pier.php?paper=10100609

References


    1. Usman, M., R. A. Abd-Alhameed, and P. S. Excell, "Design considerations of MIMO antennas for mobile phones," PIERS Online, Vol. 4, No. 1, 121-125, 2008.

    2. Che, Y. B., Y. C. Jiao, F. S. Zhang, and H. W. Gao, "A novel small CPW-fed T-shaped antenna for Mimo system applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2027-2036, 2006.
    doi:10.1163/156939306779322774

    3. Kim, I., C. W. Jung, Y. Kim, and Y. E. Kim, "Low-profile wide-band MIMO antenna with suppressed mutual coupling between two antennas," Microw. Opt. Technol. Lett., Vol. 50, No. 5, 1336-1339, 2008.
    doi:10.1002/mop.23368

    4. Min, K.-S., M.-S. Kim, C.-K. Park, and M. D. Vu, "Design for PCS antenna based on WIBRO-MIMO," Progress In Electromagnetics Research Letters, Vol. 1, 77-83, 2008.
    doi:10.2528/PIERL07111810

    5. Gao, G.-P., X.-X. Yang, and J.-S. Zhang, "A printed volcano smoke antenna for UWB and WLAN communications," Progress In Electromagnetics Research Letters, Vol. 4, 55-61, 2008.
    doi:10.2528/PIERL08051102

    6. Koo, B.-W., M.-S. Baek, and H.-K. Song, "Multiple antenna transmission technique for UWB system," Progress In Electromagnetics Research Letters, Vol. 2, 177-185, 2008.
    doi:10.2528/PIERL08011101

    7. Abouda, A. A. and S. G. Hggman, "Effect of mutual coupling on capacity of MIMO wireless channels in high SNR scenario," Progress In Electromagnetics Research, Vol. 65, 27-40, 2006.
    doi:10.2528/PIER06072803

    8. Kim, I., C. W. Jung, Y. Kim, and Y. E. Kim, "Low-profile wideband MIMO antenna with suppressed mutual coupling between two antennas," Microw. Opt. Technol. Lett., Vol. 50, 1336-1339, 2008.
    doi:10.1002/mop.23368

    9. Tounou, C., C. Decroze, D. Carsenat, T. Monédière, and B. Jécko, "Diversity antennas efficiencies enhancement," Proc. IEEE Antennas Propag. Int. Symp., 1064-1067, Honolulu, HI, June 2007.

    10. Chiu, C.-Y., C.-H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Trans. on Antennas and Propag., Vol. 55, 1732-1738, 2007.
    doi:10.1109/TAP.2007.898618

    11. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Microw. Theory Tech., Vol. 47, 2059-2074, 1999.
    doi:10.1109/22.798001

    12. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with Electromagnetic Band-Gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, 2936-2946, 2003.
    doi:10.1109/TAP.2003.817983

    13. Li, L., B. Li, H. X. Liu, and C. H. Liang, "Locally resonant cavity cell model for electromagnetic band gap structures," IEEE Trans. Antennas Propag., Vol. 54, 90-100, 2006.
    doi:10.1109/TAP.2005.861532

    14. Fu, Y. Q., Q. R. Zheng, Q. Gao, and G. H. Zhang, "Mutual coupling reduction between large antenna arrays using electromagnetic bandgap (EBG) structures," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 819-825, 2006.
    doi:10.1163/156939306776143415

    15. Ganatsos, T., K. Siakavara, and J. N. Sahalos, "Neural networkbased design of EBG surfaces for effective polarization diversity of wireless communications antenna systems," PIERS Online, Vol. 3, No. 8, 1165-1169, 2007.
    doi:10.2529/PIERS070215124728

    16. Ahn, D., J. S. Park, C. S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Microw. Theory Tech., Vol. 49, 86-93, 2001.
    doi:10.1109/22.899965

    17. Caloz, C., H. Okabe, T. Iwai, and T. Itoh, "A simple and accurate model for microstrip structures with slotted ground plane," IEEE Microwave Wireless Comp. Lett., Vol. 14, 133-135, 2004.
    doi:10.1109/LMWC.2004.828725

    18. Salonen, I. and P. Vainikainen, "Estimation of signal correlation in antenna arrays," Proc. JINA, 383-386, Nice, France, November 2, 2002.

    19. Brachat, P. and C. Sabatier, "Réseau d'antennes à 6 capteurs en diversité de polarisation," Proc. JINA, Nice, France, November 2004.

    20. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," IET Electron. Lett., Vol. 39, 705-707, 2003.
    doi:10.1049/el:20030495

    21. Thaysen, J. and K. B. Jakobsen, "Envelope correlation in (N,N) MIMO antenna array from scattering parameters," Microwave and Optical Technology Letters, Vol. 48, 832-834, 2006.