By enabling both cavity modes and plasmonic resonance together in the designed two-handed metamaterial, we demonstrate a square-wave-like (SWL) bandpass filter with high-ratio bandwidth (HRB). Our results show that this metamaterial-based bandpass filter possesses high-ratio bandwidth of 30 GHz centered at 92 GHz, excellent transmittance beyond 87.5 %, sharp transition within 1.0 GHz from -3 dB to -20 dB as upper and lower band edge transitions, and dual-band behavior. Such an HRBSWL bandpass filter can be scalable and readily applicable for the commercialized unlicensed 60 GHz spectra with a bandwidth exceeding 7 GHz, solving the challenge of conventional passive bandpass filters to allow wide bandwidths and great quality factors simultaneously.
2., "http://spectrum.ieee.org/consumer-electronics/standards/gadgets-gab-at-60-ghz,".
doi:10.1049/iet-map.2008.0222
3. http://en.wikipedia.org/wiki/Ultra-wideband,.
doi:10.1109/LMWC.2008.2008558
4., "http://www.wirelesshd.org/membership/,".
doi:10.2528/PIER08102303
5. Wang, X.-H., B.-Z. Wang, and K. J. Chen, "Compact broadband dual-band bandpass filters using slotted ground structures," Progress In Electromagnetics Research, Vol. 82, 151-166, 2008.
doi:10.1109/LMWC.2008.2008554
6. Yang, B., E. Skafidas, and R. J. Evans, "Design of 60 GHz millimetre-wave bandpass filter on bulk CMOS," IET Microwaves Antennas & Propagation, Vol. 3, 943-949, 2009.
doi:10.1109/LMWC.2008.2008554
7. Yao, B. Y., Y. G. Zhou, Q. S. Cao, and Y. C. Chen, "Compact UWB bandpass filter with improved upper-stopband performance," IEEE Microw. Wirel. Compon. Lett., Vol. 19, 27-29, 2009.
doi:10.1103/PhysRevB.78.115110
8. Razalli, M. S., A. Ismail, M. A. Mahdi, and M. N. Bin Hamidon, "Novel compact microstrip ultra-wideband filter utilizing short-circuited stubs with less vias," Progress In Electromagnetics Research, Vol. 88, 91-104, 2008.
doi:10.1002/mop.24196
9. Ma, K. X., K. C. B. Liang, R. M. Jayasuriya, and K. S. Yeo, "A wideband and high rejection multimode bandpass filter using stub perturbation," IEEE Microw. Wirel. Compon. Lett., Vol. 19, 24-26, 2009.
doi:10.1002/mop.24196
10. Chiang, Y.-J. and T.-J. Yen, "A highly symmetric two-handed metamaterial spontaneously matching the wave impedance," Opt. Express, Vol. 16, 12764-12770, 2008.
doi:10.1126/science.1094025
11. Fu, L., H. Schweizer, H. Guo, N. Liu, and H. Giessen, "Synthesis of transmission line models for metamaterial slabs at optical frequencies," Phys. Rev. B, Vol. 78, 9, 2008.
doi:10.1126/science.1094025
12. Cimen., S., G. Cakir, and L. Sevgi, "Metamaterial slabs and realization of all-type filter characteristics: Numerical and analytical investigations," Microwave and Optical Technology Letters, Vol. 51, 894-899, 2009.
13. Fu, L., H. Schweizer, H. Guo, N. Liu, and H. Giessen, Analysis of Metamaterials Using Transmission Line Models, 425-429, Springer, 2007.
doi:10.1109/TAP.2003.813622
14. Yen, T. J., W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science, Vol. 303, 1494-1496, 2004.
doi:10.1103/PhysRevLett.93.107402
15. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, 11, 2005.
doi:10.1103/PhysRevLett.93.107402
16. Chen, X. D., T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, 7, 2004.
17. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propag., Vol. 51, 1516-1529, 2003.
18. Koschny, T., M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Phys. Rev. Lett., Vol. 93, 107402, 2004.
19., http://www.itexaminer.com/intel-rd-says-60ghz-wireless-is-way- to-go-.aspx.