Vol. 21

Latest Volume
All Volumes
All Issues
2011-02-25

A Broadband PIFA with Zeroth-Order Resonator Loading

By Hong-Ze Yu and Qing-Xin Chu
Progress In Electromagnetics Research Letters, Vol. 21, 67-77, 2011
doi:10.2528/PIERL11010708

Abstract

A printed broadband planar inverted-F antenna (PIFA) with zeroth-order resonator (ZOR) loaded is proposed whose shorting strip of the PIFA is replaced by an inter-digital capacitor and thin inductive strip in series. The loaded inter-digital capacitor and thin inductive strip act as a shorting strip at the 3.1 GHz, which allows the antenna to maintain its regular performance. Around 2.0 GHz, the antenna with the inter-digital capacitor and thin inductive strip works on the zeroth-order resonance mode, which makes the physical size be independent of the wavelength. By merging the two modes, a broadband performance can be achieved. The size of the antenna is only 12.5 mm×7.81 mm×1.6 mm with single layer. The measured antenna bandwidth is 1.63 GHz (about 65%), total gain is above 2.5 dBi and the simulated radiation efficiency is over 90% in the working band. Especially the antenna has same direction of the radiation patterns in the broadband. In the end, the antenna with lumped elements loading is also discussed.

Citation


Hong-Ze Yu and Qing-Xin Chu, "A Broadband PIFA with Zeroth-Order Resonator Loading," Progress In Electromagnetics Research Letters, Vol. 21, 67-77, 2011.
doi:10.2528/PIERL11010708
http://test.jpier.org/PIERL/pier.php?paper=11010708

References


    1. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 50, 2702-2712, 2002.
    doi:10.1109/TMTT.2002.805197

    2. Sanada, A., C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive index," IEEE Trans. Microw. Theory Tech., Vol. 52, 1252-1263, 2004.
    doi:10.1109/TMTT.2004.825703

    3. Sanada, A., C. Caloz, and T. Itoh, "Novel zeroth-order resonance in composite right/left-handed transmission line resonators," Proc. Asia-Pacic Microwave Conf., Vol. 3, 1588-1591, 2003.

    4. Choi, J. and S. Lim, "Ultra-wideband power splitting/combining technique using zero-degree left-handed transmission lines," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 2119-2127, 2010.

    5. Sanada, A., M. Kimura, I. Awai, C. Caloz, and T. Itoh, "A planar zeroth-order resonator antenna using a left-handed transmission line," Proc. Eur. Microw. Conf., Vol. 3, 1341-1344, 2004.

    6. Choi, J. and S. Lim, "Frequency and radiation pattern reconfigurable small metamaterial antenna using its extraordinary zeroth-order resonance," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 2119-2127, 2008.

    7. Dolatsha, N., M. Shahabadi, and R. Dehbashi, "Via-free cpw-based composite right/left-handed transmission line and a calibration approach to determine its propagation constant," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-12, 1599-1606, 2008.
    doi:10.1163/156939308786390058

    8. Zhou, H., S. Qu, Z. Pei, Y. Yang, J. Zhang, J. Wang, H. Ma, C. Gu, X. Wang, Z. Xu, W. Peng, and P. Bai, "A high-directive patch antenna based on all-dielectric near-zero-index metamaterial superstrates," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 10, 1387-1396, 2010.
    doi:10.1163/156939310791958680

    9. Yu, A., F. Yang, and A. Elsherbeni, "A dual band circularly polarized ring antenna based on composite right and left handed metamaterials," Progress In Electromagnetics Research, Vol. 78, 73-81, 2008.
    doi:10.2528/PIER07082902

    10. Si, L.-M. and X. Lv, "CPW-fed multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications," Progress In Electromagnetics Research, Vol. 83, 133-146, 2008.
    doi:10.2528/PIER08050404

    11. Antoniades, M. A. and G. V. Eleftheriades, "A broadband dual-mode monopole antenna using NRI-TL metamaterial loading," IEEE Antennas Wireless Propag. Lett., Vol. 8, 258-261, 2009.
    doi:10.1109/LAWP.2009.2014402

    12. Zhu, J., M. A. Antoniades, and G. V. Eleftheriades, "A compact tri-band monopole antenna with single-cell metamaterial loading," IEEE Trans. Antennas Propag., Vol. 58, No. 4, 1031-1038, 2010.
    doi:10.1109/TAP.2010.2041317

    13. Deng, S. M., C. L.Tsai, C. K. Yeh, S. S, and Bor, "CPW-fed PIFAS with a capacitively coupling slot for dual wide-band operations," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5-6, 721-733, 2010.
    doi:10.1163/156939310791036467

    14. Sanchez-Montero, R., S. Salcedo-Sanzand, J. A. Portilla-Figueras, and R. Langley, "Hybrid pifa-patch antenna optimized by evolutionary programming," Progress In Electromagnetics Research, Vol. 108, 221-234, 2010.
    doi:10.2528/PIER10072804

    15. Yang, C. W. and C. W. Jung, "Broad dual-band PIFA using self-complementary structure for DVB-H applications," Electron. Lett., Vol. 46, No. 4, 606-608, 2010.
    doi:10.1049/el.2010.0512

    16. Sim, D.-U. and J.-I. Choi, "A compact wideband modified planar inverted F antenna (PIFA) for 2.4/5-GHz WLAN applications," IEEE Antennas and Wireless Propag. Lett., Vol. 5, No. 1, 391-394, 2006.
    doi:10.1109/LAWP.2006.881914

    17. Park, J.-H., Y.-H. Ryu, J.-G. Lee, and J.-H. Lee, "Epsilon negative zeroth-order resonator antenna," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3710-3712, 2007.
    doi:10.1109/TAP.2007.910505

    18. Huang, J.-Q. and Q.-X. Chu, "Small ZOR antenna with high efficiency based on epsilon negative transmission line," Proc. of Int. Conf. on Microwave & Millimeter Wave Tech., 528-531, 2010.

    19. Bahl, I., Lumped Elements for RF and Microwave Circuits, Artech House, Norwood, 2003.