The dispersion relation of piecewise linear recursive convolution finite difference time domain (PLRC-FDTD) method for space-varying plasma is analyzed using a novel equivalent method. The equivalent dispersion and dissipation errors have been taken into account. The efficiency of the novel equivalent method is substantiated by computing the test and reference transmitted electric field. The comparison of the test and reference solutions validates that the equivalent method is an efficient method to analyze the dispersion relation of PLRC-FDTD method used for space-varying plasma.
2. Luebbers, R. J., F. Hunsberger, and K. S. Kunz, "A frequency-dependent finite-difference time-domain formulation for transient propagation in plasma," IEEE Trans. on Antennas and Propagation, Vol. 39, 29-34, 1991.
doi:10.1109/8.64431
3. Kelley, D. F. and R. J. Luebbers, "Piecewise linear recursive convolution for dispersive media using FDTD," IEEE Trans. on Antennas and Propagation, Vol. 44, 792-797, 1996.
doi:10.1109/8.509882
4. Young, J. L., "A full finite difference time domain implementation for radio wave propagation in a plasma," Radio Sci., Vol. 29, 1513-1522, 1994.
doi:10.1029/94RS01921
5. Chen, Q., M. Katsurai, and P. H. Aoyagi, "An FDTD formulation for dispersive media using a current density," IEEE Trans. on Antennas and Propagation, Vol. 46, 1739-1746, 1998.
doi:10.1109/8.736632
6. Lee, J. H. and D. K. Kalluri, "Three-dimensional FDTD simulation of electromagnetic wave transformation in a dynamic inhomogeneous magnetized plasma," IEEE Trans. on Antennas and Propagation, Vol. 47, 1146-1151, 1999.
doi:10.1109/8.785745
7. Han, Z., J. Ding, P. Chen, Z. Zhang, and C. Guo, "FDTD analysis of three-dimensional target covered with inhomogeneous unmagnetized plasma," 2010 International Conference on Microwave and Millimeter Wave Technology (ICMMT 2010), 125-128, Piscataway, NJ, USA, May 8-11, 2010.
8. Young, J. L., A. Kittichartphayak, Y. M. Kwok, and D. Sullivan, "On the dispersion errors related to (FD)2TD type schemes," IEEE Trans. on Microwave Theory and Techniques, Vol. 43, 1902-1910, 1995.
doi:10.1109/22.402280
9. Cummer, S. A., "An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy," IEEE Trans. on Antennas and Propagation, Vol. 45, 392-400, 1997.
doi:10.1109/8.558654
10. Li, X.-S. and B.-J. Hu, "FDTD analysis of a magneto-plasma antenna with uniform or nonuniform distribution," IEEE Antennas and Wireless Propagation Lett., Vol. 9, 175-178, 2010.
doi:10.1109/LAWP.2010.2044971
11. Qian, Z. H., R. S. Chen, K. W. Leung, and H. W. Yang, "FDTD analysis of microstrip patch antenna covered by plasma sheath," Progress In Electromagnetics Research, Vol. 52, 173-183, 2005.
doi:10.2528/PIER04080901
12. Christ, A., J. Frohlich, and N. Kuster, "Correction of numerical phase velocity errors in nonuniform FDTD meshes," IEICE Trans. on Communications, Vol. 85, 2904-2915, 2002.
13. Wei, B., S.-Q. Zhang, Y.-H. Dong, and F. Wang, "A general FDTD algorithm handling thin dispersive layer," Progress In Electromagnetics Research B, Vol. 18, 243-257, 2009.
doi:10.2528/PIERB09090306
14. Atteia, G. E. and K. F. A. Hussein, "Realistic model of dispersive soils using PLRC-FDTD with applications to GPR systems," Progress In Electromagnetics Research B, Vol. 26, 335-359, 2010.
doi:10.2528/PIERB10083102
15. Heh, D. Y. and E. L. Tan, "Dispersion analysis of FDTD schemes for doubly lossy media," Progress In Electromagnetics Research B, Vol. 17, 327-342, 2009.
doi:10.2528/PIERB09082802