Vol. 28

Latest Volume
All Volumes
All Issues
2011-11-29

Three-Dimensional FDTD Analysis of the Dual-Band Implantable Antenna for Continuous Glucose Monitoring

By Zahra Noroozi and Farrokh Hojjat-Kashani
Progress In Electromagnetics Research Letters, Vol. 28, 9-21, 2012
doi:10.2528/PIERL11070113

Abstract

The finite difference time domain (FDTD) method is widely used as a computational tool to simulate the electromagnetic wave propagation in biological tissues. When expressed in terms of Debye parameters, dispersive biological tissues dielectric properties can be efficiently incorporated into FDTD codes. In this paper, FDTD formulation with nonuniform grid is presented to simulate a dual medical implant communications service (MICS) (402-405 MHz) and industrial, scientific, and medical (ISM) (2.4--2.48\,GHz) band implantable antenna for continuous glucose-monitoring applications. In addition, we present computationally simpler two-pole Debye models that retain the high accuracy of the Cole-Cole Model for dry skin in MICS and ISM bands. The reflection coefficient simulation result with Debye dispersion is presented and compared with the published results. FDTD was also applied to analyze antenna's far-field.

Citation


Zahra Noroozi and Farrokh Hojjat-Kashani, "Three-Dimensional FDTD Analysis of the Dual-Band Implantable Antenna for Continuous Glucose Monitoring," Progress In Electromagnetics Research Letters, Vol. 28, 9-21, 2012.
doi:10.2528/PIERL11070113
http://test.jpier.org/PIERL/pier.php?paper=11070113

References


    1. Cavuoto, J., "Neural engineering's image problem," IEEE Spectr., Vol. 41, No. 4, 32-37, 2004.
    doi:10.1109/MSPEC.2004.1279191

    2. Furse, C. M., "Design of an antenna for pacemaker communication," Microw. RF, Vol. 39, No. 3, 73-76, 2000.

    3. Schuster, J. and R. Luebbers, "An FDTD algorithm for transient propagation in biological tissue with a cole-cole dispersion relation," IEEE AP/URSI Int. Symp. Dig., Vol. 4, 1988-1991, 1998.

    4. Jacobsen, S. and P. R. Stauffer, "Multifrequency radiometric determination of temperature profiles in a lossy homogenous phantom using a dual-mode antenna with integral water bolus," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 7, 1737-1746, 2002.
    doi:10.1109/TMTT.2002.800424

    5. Scanlon, W. G. , N. E. Evans, and J. B. Burns, "FDTD analysis of closecoupled 418 MHz radiating devices for human biotelemetry," Phys. Med. Biol., Vol. 44, 335-345, 1999.
    doi:10.1088/0031-9155/44/2/003

    6. Kim, J. and Y. Rahmat-Samii, "Implanted antennas inside a human body: Simulations, designs, and characterizations," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 8, 1934-1943, 2004.
    doi:10.1109/TMTT.2004.832018

    7. Soontornpipit, P. , C. Y. Furse, and Y. C. Chung, "Design of implantable microstrip antenna for communication with medical implants," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 8, 1944-1951, 2004.
    doi:10.1109/TMTT.2004.831976

    8. Warty, R. and M. R. Tofighi, "Characterization of implantable antennas for intracranial pressure monitoring: Reflection by and transmission through a scalp phantom," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 10, 2008.
    doi:10.1109/TMTT.2008.2004254

    9. Kazuyuki, W. , M. Takahashi, and K. Ito, "Performances of an implanted cavity slot antenna embedded in the human arm," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 2009.

    10. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Phys. Med. Biol., Vol. 41, 2231-2249, 1996.
    doi:10.1088/0031-9155/41/11/001

    11. Gabriel , S. , R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Phys. Med. Biol., Vol. 41, 2251-2269, 1996.
    doi:10.1088/0031-9155/41/11/002

    12. Gabriel, S. , R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
    doi:10.1088/0031-9155/41/11/003

    13. Wuren , T. , T. Takai, M. Fujii, and I. Sakagami, "Effective 2-Debye-pole FDTD model of electromagnetic interaction between whole human body and UWB radiation," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 7, 483-485, 2007.
    doi:10.1109/LMWC.2007.899295

    14. Lazebnik, M. , M. Okoniewski, J. H. Booske, and S. C. Hagness, "Highly accurate Debye models for normal and malignant breast tissue dielectric properties at microwave frequencies," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 12, 2007.
    doi:10.1109/LMWC.2007.910465

    15. Fujii, M. , R. Fujii, R. Yotsuki, T. Wuren, T. Takai, and I. Sakagami, "Exploration of whole human body and UWB radiation interaction by e±cient and accurate two-Debye-pole tissue models," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 2010.
    doi:10.1109/TAP.2009.2024968

    16. Guo, B., J. Li, and H. Zmuda, "A new FDTD formulation for wave propagation in biological media with cole-cole model," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 12, 2006.
    doi:10.1109/LMWC.2006.885583

    17. Mrozowski , M. and M. A. Stuchly, "Parametrization of media dispersive properties for FDTD," IEEE Trans. Antennas Propag., Vol. 45, No. 9, 1438-1439, 1997.
    doi:10.1109/8.623134

    18. Karacolak, T., A. Z. Hood, and E. Topsakal, "Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 4, 1001-1008, 2008.
    doi:10.1109/TMTT.2008.919373

    19. Elsherbeni, A. and V. Demir, The Finite-difference Time-domain Method for Electromagnetics with Matlab Simulations, 484, 2009.

    20. Mrozowski, M. and M. A. Stuchly, "Parameterization of media dispersive properties for FDTD," IEEE Trans. Antennas Propag., Vol. 45, No. 9, 1438-1439, 1997.
    doi:10.1109/8.623134

    21. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Boston, MA, 2005.

    22. Abd El-Raouf, H. E., V. V. S. Prakash, J. Yeo, and R. Mittra, "FDTD simulation of a microstrip phased array with a coaxial feed," IEE Proc. --- Microw. Antennas Propag., Vol. 151, No. 3, 2004.

    23. Hajiaboli, A. and M. Popovic, "FDTD subcell modeling of the ineer conductor of the coaxial feed: Accuracy and convergence analysis," IEEE Trans. Magn., Vol. 43, No. 4, 1361-1364, 2007.
    doi:10.1109/TMAG.2006.891009

    24. Riku, M. M. and A. K. Markku, "A stabilized resistive voltage source for FDTD thin-wire models," IEEE Trans. Antennas Propag., Vol. 51, No. 7, 2003.

    25. Taflove, A. and K. Umashankar, "Radar cross section of general three-dimensional structures," IEEE Trans. Electromagn.Compat., Vol. 25, 433-440, 1983.
    doi:10.1109/TEMC.1983.304133

    26. Huynh, M. C. and W. Stutzman, "Ground plane effects on planar inverted-f antenna (PIFA) performance," Proc. Inst. Elect. Eng. Microw., Antennas Prop., Vol. 150, No. 4, 209-213, 2003.
    doi:10.1049/ip-map:20030551